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Abstract. In the present paper, we study the 
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Аннотация. В этой статье изучене −p адическая модель Изинга на дереве Кэли второго порядка. 

Доказано существование AH  - слабо периодических (непериодических) −p адических обобщенных мер 

Гиббса для этой модели. 
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 Let Q  be the field of rational numbers. For a fixed prime p , every rational number 0x
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can be represented in the form 
m

n
px r= , where ,, Znr   m  is a positive integer, and n  and m  

are relatively prime with p , r  is called the order of x  and written xordr p= . The p -adic norm 

of x  is given by 
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This norm is non-Archimedean and satisfies the so called strong triangle inequality 

},max{
ppp

yxyx +  

for all Qyx , . 

The completion of Q  with respect to the p -adic norm defines the p -adic field which is 

denoted by pQ  (see [1]). 

 The completion of the field of rational numbers Q  is either the field of real numbers R  or 

one of the fields of −p adic numbers pQ  (Ostrowski’s theorem). 

 Any p-adic number 0x  can be uniquely represented in the canonical form 

...)( 2

210

)( +++= pxpxxpx x  

where Zx )(  and the integers jx  satisfy:   Njpxx j − ,1,...,2,1,0,00  (see [1]). In 

this case )(x

p
px −= .  

The Cayley tree kГ of order 1k  is an infinite tree i.e., a graph without cycles, such that 

exactly 1+k  edges originate from each vertex. Denote by V  the set of vertices, and by L  the set 

of edges of the Cayley tree kГ . Two vertices x  and y  are called nearest neighbours if there exist 

an edge Ll  connecting them and denote by yxl ,=  (see [2]).  

Fix kГx 0
 and given vertex x , denote by x  the number of edges in the shortest path 

connecting 0x  and x . 

For kГyx , , denote by ),( yxd  the number of edges in the shortest path connecting x  and 

y . For kГyx , , we write yx   if x  belongs to the shortest path connecting 0x  with y , and we 

write yx   if yx  and yx  . If yx   and 1+= xy , then we write yx → .  

 We set  
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 The set )(xS  is called direct successor of x .  

We consider a −p adic Ising model where the spin values take in the set  1,1−=Ф . We 

define a configuration   on V  by the function .)(: ФxVx →   Similarly, one can be define 

n  and 
n  on nV  and nW  respectively.   is the set if all configuration on V  and denote VФ=  

(resp. n

n

n

n

W

W

V

V ФФ == , ). 

For given configurations 
11 −

− nVn  and 
nW

n )(  we define a configuration in 
nV  as 

follows  
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 A formal −p adic Hamiltonian pQH →:  of the −p adic Ising model is defined by  

 




=
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where )1/(10 −− p

p
pJ  for any ., Lyx   

We define a function Pxx QhxVxhxh → },{\,: 0  and consider −p adic probability 

generalized Gibbs measure n

h  on 
nV  defined by  

,...,2,1,)}({exp
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where )(h

nZ  is the normalizing constant  
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A −p adic probability generalized Gibbs measure n

h  is said to be consistent if for all 1n  

and ,
11 −

− nVn  we have  
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In this case, by the −p adic analogue of Kolmogorov theorem there exists a unique measure 

h  on the set   such that )(})({ )(

n

n

hnVh n
 =  for all n  and .

nVn  (see [3]) 

Proposition 1.[4] The sequence of −p adic probability distributions ,}{ 1

)(

n

n

h  determined 

by formula (2) is consistent if and only if for any }{\ 0xVx , the following equation holds: 
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where .1),2(exp =  Jp  

It is known that kГ  can be represented as a non-commutative group kG , which is the free 

product of k +1 cyclic groups of the second order [2].  

Let },...,,{/ 10

*

rkk HHHGG =  be a factor group, where *

kG  is a normal subgroup of index 

.1r  

Definition 1. A set },{ kx Gxhh =  of quantities is called −*

kG  periodic if ,xxy hh =  for all 

kGx  and *

kGy . 

For kGx  we denote by 


x  the unique point of the set ).(\},:{ xSyxGy k  

Definition 2. A set of quantities },{ kx Gxhh =  is called −*

kG  weakly periodic, if ijx hh =

, for any .ji HxHx 


 

Definition 3. A p-adic generalized Gibbs measure   is said to be −*

kG (weakly) periodic if 

it corresponds to a −*

kG  (weakly) periodic h. We call a −kG periodic measure a translation-

invariant measure. 

Let   
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where  1,...,3,2,1 += kNA k , and )( ix a  is the number of letters ia  in a word kGx

. Note that AH - is a normal subgroup of the kG  (see [2]). Note that a weakly periodic Gibbs 

measure depends on normal subgroup. According to the selection of the normal subgroup, different 

weakly periodic Gibbs measures are found (see [3]). The set of weakly periodic Gibbs measures 

also includes the set of periodic (in particular translation-invariant) Gibbs measures. 

 We note that in the case 1+= kA  (where A  is the number of elements of the set A  ), 

i.e., kNA = , the concept of weak periodicity coincides with ordinary periodicity. Therefore, we 

consider kNA   such that kNA  . In this work, we consider the case 1=A . According to (5) 

the AH -weakly periodic set of xh  has the following form  
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By (5) we have  
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 Consider operator 
44: RRW → , defined as follows: 




















+

+


+

+
=












+

+
=















+

+
=

+

+


+

+
=

.
11

,
1

,
1

,
11

2

01

2

01

2

11

2

112

11

2

2

11

2

112

10

2

2

00

2

002

01

2

00

2

00

2

10

2

102

00

h

h

h

h
h

h

h
h

h

h
h

h

h

h

h
h

























 

Note that the system of (7) describes fixed points of the operator W , i.e. )(hWh = .  

Lemma 1. The following sets are invariant with respect to the operator W : 
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Remark 1. [4] It is easy to see that if the function xh−  is a solution to equation (5), then the 

function xh−  is also a solution. These solutions define the same measure h  which we consider 

Ising model on the Cayley tree 

of order k . 

We shall find AH -weakly periodic (non-periodic) −p adic generalized Gibbs measure for 

the Ising model on the set 2I . 

The system of equation (7) has the following solutions  
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Lemma 2. The solutions 
700h  and 

800h  belong to pQ , iff ).4(mod1p  

Theorem 1. If )4(mod1p  then there exists at least one weakly periodic (non-periodic) 

−p adic generalized Gibbs measure for the −p adic Izing model on the Cayley tree of order two. 

Remark 2. In [5] it was proved that for the Ising model on a Cayley tree of order k = 2 with 

respect to the normal divisor of index 2, there does not exist a weakly periodic (non-translation-

invariant) Gibbs measure in real case. In p-adic case in Theorem 1 it was shown that for the Ising 

model there is at least one new weakly periodic p-adic generalized Gibbs measure. 
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