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Abstract. In the present paper, we study the P- adic Ising model on the Cayley tree of order two. The

existence of H A-weakly periodic (non-periodic) P~ adic generalized Gibbs measures for this model is proved.
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Let Q be the field of rational numbers. For a fixed prime p, every rational number x = 0
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. n . L
can be represented in the form x = p" —, where r,ne Z, m is a positive integer, and n and m
m

are relatively prime with p, r is called the order of x and written r =ord x. The p -adic norm
of x is given by
U Ko
This norm is non-Archimedean and satisfies the so called strong triangle inequality
X+ y\p < max{|x y\p}

o
forall x,yeQ.
The completion of Q with respect to the p -adic norm defines the p -adic field which is
denoted by Q, (see [1]).
The completion of the field of rational numbers Q is either the field of real numbers R or
one of the fields of p —adic numbers Q, (Ostrowski’s theorem).
Any p-adic number x = 0 can be uniquely represented in the canonical form
X=p (X, + X, P+ X, p% +...)
where »(x) € Z and the integers x; satisfy: x, #0, x; € {0.12..., p—1}, je N (see[1]). In
this case \x\p =p7,
The Cayley tree I'* of order k >1 is an infinite tree i.e., a graph without cycles, such that
exactly k +1 edges originate from each vertex. Denote by V the set of vertices, and by L the set

of edges of the Cayley tree "% . Two vertices x and y are called nearest neighbours if there exist
an edge | € L connecting them and denote by | = <x, y> (see [2]).

Fix x, € I'* and given vertex x, denote by

x\ the number of edges in the shortest path
connecting x, and X.

For x,y € I'*, denote by d(x, y) the number of edges in the shortest path connecting x and
y.For x,y e I'*, we write x <y if x belongs to the shortest path connecting x, with y, and we
write x <y if x<yand x=y.If x<y and |y = |x/+1, then we write x >y

We set
W, = {x eV|d(x,x,) = n}, V, = {x eV/d(x,x,) < n}, L, = {I =(x,y)eLx,y eVn}

SX)={yeV:ix-ovy} S X)={yeV:d(xy)=1.
The set S(x) is called direct successor of x.

We consider a p—adic Ising model where the spin values take in the set @ = {—1,1}. We
define a configuration o onV by the function o : x eV — o(x) € @. Similarly, one can be define

o, and ¢" onV, and W, respectively. Q is the set if all configuration on V and denote Q = @"
(resp. Q, =@", Q, =@™),
For given configurations o, , €Q, and " e Q,, we define a configuration in Q, as

follows



) o.,(x), if xeV, ,
(O-n—l v Xx) =" _ .
p"(x), if xXeWw,

A formal p—adic Hamiltonian H :Q — Q, of the p —adic Ising model is defined by
H(o) =3 > o()a(y), (1)

{x.yjeL

where 0 < \J\p < p MY forany (x,y)eL.
We define a function h:x —h,, ¥xeV \{x,}, h, € Q, and consider p— adic probability

generalized Gibbs measure s, on €, defined by

n 1
lulg ) (Gn) = ﬁexp p{H n (Gn )})];V[ ho’(x),x y N= 1’2""’ (2)
where Z™ is the normalizing constant
Zr(1h) = Zexp p{Hn ((p)}H ho’(x),x' (3)
PeQy, XeW,

A p—adic probability generalized Gibbs measure ., is said to be consistent if for all n>1
and o, , €Q, , wehave

24" (00 v o) =17 (0,,). @)

(/JEQWH

In this case, by the p — adic analogue of Kolmogorov theorem there exists a unique measure
4, on the set Q such that , ({a‘\,n =0,}) =" (c,) forall n and o, €Q, .(see [3])

Proposition 1.[4] The sequence of p — adic probability distributions {z{"},.,, determined
by formula (2) is consistent if and only if for any x eV \{Xx,}, the following equation holds:

he H 6h§ +1
X yeS(X) hj +9’

()

where 0 =exp,(2J3), 6 #1.

It is known that " can be represented as a non-commutative group G, , which is the free
product of k +1 cyclic groups of the second order [2].

Let G, /G, ={H,,H,,...,H,} be a factor group, where G, is a normal subgroup of index
r>1.

Definition 1. Aset h={h,, x € G, } of quantities is called G, — periodic if h, =h,, forall
xeG, and yeG,.

For x € G, we denote by x, the unique point of the set {y € G, : (x, y }\ S(x).

Definition 2. A set of quantities h ={h,, x € G, } is called G, — weakly periodic, if h, = h;
,forany xe H; x, eH;.

Definition 3. A p-adic generalized Gibbs measure 4 is said to be G, — (weakly) periodic if

it corresponds to a G, — (weakly) periodic h. We call a G, —periodic measure a translation-

invariant measure.
Let



H, Z{XEGk :Za)x(ai)—even},

icA
where @ = Ac N, ={1,2,3,...k+1},and @, (a;) is the number of letters a, inaword x € G,
. Note that H ,- is a normal subgroup of the G, (see [2]). Note that a weakly periodic Gibbs

measure depends on normal subgroup. According to the selection of the normal subgroup, different
weakly periodic Gibbs measures are found (see [3]). The set of weakly periodic Gibbs measures
also includes the set of periodic (in particular translation-invariant) Gibbs measures.

We note that in the case |A =k +1 (where |A is the number of elements of the set A ),
i.e.,, A=N,, the concept of weak periodicity coincides with ordinary periodicity. Therefore, we
consider Ac N, such that A= N,. In this work, we consider the case \A\ =1. According to (5)

the H ,-weakly periodic set of h, has the following form

hy, if XxeH,, X, €H,,
h - oy ?f XeH,, X, €G \H,, ©)
h,, if xeG,\H,, X, eH,,
h,, if xeG \H,, X, e€G \H,.
By (5) we have
,  thi+1 thy+1
©0+hy O+hy’
, [ +1)
h01= 2 '
6+ hy,
(7)

2 +1)°

h120 :( 11 - j ,
6+h;

he = 6’ +21. 6hé, +21.
0+h;; 6+hg

Consider operator W : R* — R*, defined as follows:
e thy +1 éhg, +1
®0+h} 0+h3’

2
hrZ — a.]OZO +1
01 2 ’
0+ hy,

2
hrZ — a]lzl +1
10 2 ’
6+h;

e thi +1 6hg +1

Y0+h: 0+hy
Note that the system of (7) describes fixed points of the operator W , i.e. h=W (h).
Lemma 1. The following sets are invariant with respect to the operator W :
l,=theR*:hy =hy =hy =hy. }
I, ={h e R* :hy, = +h,,, hy =+hy,}




Remark 1. [4] It is easy to see that if the function —h, is a solution to equation (5), then the
function —h, is also a solution. These solutions define the same measure g, which we consider

Ising model on the Cayley tree

of order k.

We shall find H ,-weakly periodic (non-periodic) p — adic generalized Gibbs measure for
the Ising model on the set I,.

The system of equation (7) has the following solutions

huo,, = £1,
6-1+./(0+1)(6-3
o, = (2 )( ),
0-1-./(0+1)(0-3
o, = «/(2 )( ),
Ny, =*+/—1.

Lemma 2. The solutions hy, and hy, belongto Q, iff p=1(mod4).

Theorem 1. If p=1(mod4) then there exists at least one weakly periodic (non-periodic)
p — adic generalized Gibbs measure for the p — adic Izing model on the Cayley tree of order two.

Remark 2. In [5] it was proved that for the Ising model on a Cayley tree of order k = 2 with
respect to the normal divisor of index 2, there does not exist a weakly periodic (non-translation-
invariant) Gibbs measure in real case. In p-adic case in Theorem 1 it was shown that for the Ising
model there is at least one new weakly periodic p-adic generalized Gibbs measure.
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