ВЕСТНИК ОШСКОГО ГОСУДАРСТВЕННОГО УНИВЕРСИТЕТА МАТЕМАТИКА, ФИЗИКА, ТЕХНИКА. 2023, №2

МАТЕМАТИКА

УДК 517.98 – 519.21 https://doi.org/10.52754/16948645_2023_2_195

NEW WEAKLY PERIODIC *^P* [−] **ADIC GENERALIZED GIBBS MEASURE FOR THE** *^P* [−] **ADIC ISING MODEL ON THE CAYLEY TREE OF ORDER TWO**

*Raxmatullayev MuzaffarMuxammadjanovich, Dr Sc, professor, mrahmatullaev@rambler.ru Institute of Mathematics named after V.I. Romanovsky of the Academy of Sciences of the Republic of Uzbekistan, Namangan, Uzbekistan Abdukaxorova Zulxumor Tuxtasinovna, graduate student of PhD, zulxumorabdukaxorova@gmail.com Namangan State University, Namangan, Uzbekist*an.

Abstract. In the present paper, we study the $P -$ adic Ising model on the Cayley tree of order two. The existence of H *A* -weakly periodic (non-periodic) P^- adic generalized Gibbs measures for this model is proved.

Keywords: Cayley tree, $P -$ adic numbers, $P -$ adic Ising model, Gibbs measure, weakly periodic Gibbs *measure.*

СУЩЕСТВОВАНИЕ СЛАБО ПЕРИОДИЧЕСКИХ ОБОБЩЕННЫХ *Р* − **АДИЧЕСКИХ МЕР ГИББСА ДЛЯ** *Р* [−] **АДИЧЕСКОЙ МОДЕЛИ ИЗИНГА НА ДЕРЕВЕ КЭЛИ ВТОРОГО ПОРЯДКА**

Рахматуллаев Музаффар Мухаммаджанович, д.ф.-м.н., профессор, mrahmatullaev@rambler.ru Институт Математики имени В.И. Романовского Академии Наук Республики Узбекистан, Наманган, Узбекистан Абдукахорова Зулхумор Тухтасиновна, аспирант, zulxumorabdukaxorova@gmail.com Наманганский государственный университет, Наманган, Узбекистан

Аннотация. В этой статье изучене p [−] *адическая модель Изинга на дереве Кэли второго порядка. Доказано существование H ^A - слабо периодических (непериодических) p* [−] *адических обобщенных мер Гиббса для этой модели.*

Ключевые слова: Дерево Кэли, p [−] *адические числа, модель Изинга, мера Гиббса, слабo периодические мерa Гиббса.*

Let Q be the field of rational numbers. For a fixed prime p, every rational number $x \neq 0$

can be represented in the form $x = p^r \frac{n}{m}$ $x = p^r \stackrel{n}{\longrightarrow}$, where $r, n \in \mathbb{Z}$, *m* is a positive integer, and *n* and *m* are relatively prime with p, r is called the order of x and written $r = ord_p x$. The p-adic norm of *x* is given by

$$
|x|_p = \begin{cases} p^{-r}, & x \neq 0 \\ 0, & x = 0 \end{cases}
$$

This norm is non-Archimedean and satisfies the so called strong triangle inequality $||x + y||_p \le \max\{||x||_p, ||y||_p\}$

for all $x, y \in Q$.

The completion of Q with respect to the p -adic norm defines the p -adic field which is denoted by Q_p (see [1]).

The completion of the field of rational numbers Q is either the field of real numbers R or one of the fields of p – adic numbers Q_p (Ostrowski's theorem).

Any p-adic number $x \neq 0$ can be uniquely represented in the canonical form

$$
x = p^{\gamma(x)}(x_0 + x_1 p + x_2 p^2 + \dots)
$$

where $\gamma(x) \in Z$ and the integers x_j satisfy: $x_0 \neq 0$, $x_j \in \{0,1,2,..., p-1\}$, $j \in N$ (see [1]). In this case $|x| = p^{-\gamma(x)}$ $x|_p = p^{-\gamma(x)}$.

The Cayley tree Γ^k of order $k \ge 1$ is an infinite tree i.e., a graph without cycles, such that exactly $k+1$ edges originate from each vertex. Denote by V the set of vertices, and by L the set of edges of the Cayley tree Γ^k . Two vertices x and y are called *nearest neighbours* if there exist an edge $l \in L$ connecting them and denote by $l = \langle x, y \rangle$ (see [2]).

Fix $x_0 \in \Gamma^k$ and given vertex x, denote by |x| the number of edges in the shortest path connecting x_0 and x .

For $x, y \in \Gamma^k$, denote by $d(x, y)$ the number of edges in the shortest path connecting x and *y*. For $x, y \in \Gamma^k$, we write $x \leq y$ if x belongs to the shortest path connecting x_0 with y, and we write $x < y$ if $x \le y$ and $x \ne y$. If $x \le y$ and $|y| = |x| + 1$, then we write $x \rightarrow y$.

We set
\n
$$
W_n = \{x \in V | d(x, x_0) = n\}, \ \ V_n = \{x \in V | d(x, x_0) \le n\}, \ \ L_n = \{l = \langle x, y \rangle \in L | x, y \in V_n\}
$$
\n
$$
S(x) = \{y \in V : x \to y\}, \quad S_1(x) = \{y \in V : d(x, y) = 1\}.
$$

The set $S(x)$ is called *direct successor of* x .

We consider a p – adic Ising model where the spin values take in the set $\Phi = \{-1,1\}$. We define a configuration σ on V by the function σ : $x \in V \to \sigma(x) \in \Phi$. Similarly, one can be define σ_n and σ^n on V_n and W_n respectively. Ω is the set if all configuration on V and denote $\Omega = \Phi^V$ (resp. $\Omega_V = \Phi^{V_n}$, $\Omega_W = \Phi^{W_n}$ *n W* $\Omega_{_{V_{\!u}}} = \varPhi^{V_{n}} , \,\, \Omega_{_{W_{\!u}}} = \varPhi^{W_{n}}).$

For given configurations $\sigma_{n-1} \in \Omega_{V_{n-1}}$ and $\varphi^{(n)} \in \Omega_{W_n}$ we define a configuration in Ω_{V_n} as follows

$$
(\sigma_{n-1} \vee \varphi^n)(x) = \begin{cases} \sigma_{n-1}(x), & \text{if } x \in V_{n-1} \\ \varphi^n(x), & \text{if } x \in W_n \end{cases}.
$$

A formal p – adic Hamiltonian $H : \Omega \to Q_p$ of the p – adic Ising model is defined by

$$
H(\sigma) = J \sum_{\{x,y\} \in L} \sigma(x) \sigma(y), \tag{1}
$$

where $0 < |J|$ $\leq p^{-1/(p-1)}$ $J|_{p}$ < $p^{-1/(p-1)}$ for any $\langle x, y \rangle \in L$.

We define a function $h: x \to h_x$, $\forall x \in V \setminus \{x_0\}$, $h_x \in Q_P$ and consider p – adic probability generalized Gibbs measure μ_h^n on Ω_{V_n} defined by

$$
\mu_h^{(n)}(\sigma_n) = \frac{1}{Z_n^{(h)}} \exp_p \{ H_n(\sigma_n) \} \prod_{x \in W_n} h_{\sigma(x),x}, \quad n = 1, 2, \dots,
$$
 (2)

where $Z_n^{(h)}$ is the normalizing constant

$$
Z_n^{(h)} = \sum_{\varphi \in \Omega_{V_n}} \exp_p \{ H_n(\varphi) \} \prod_{x \in W_n} h_{\sigma(x),x}.
$$
 (3)

A *p* − adic probability generalized Gibbs measure μ_h^n is said to be consistent if for all *n* ≥ 1 and $\sigma_{n-1} \in \Omega_{V_{n-1}}$, we have

$$
\sum_{\varphi \in \Omega_{W_n}} \mu_h^{(n)}(\sigma_{n-1} \vee \varphi) = \mu_h^{(n-1)}(\sigma_{n-1}).
$$
 (4)

In this case, by the p – adic analogue of Kolmogorov theorem there exists a unique measure μ_h on the set Ω such that $\mu_h(\{\sigma|_{V_n} \equiv \sigma_n\}) = \mu_h^{(n)}(\sigma_n)$ $\mu_h(\{\sigma|_{V_n} \equiv \sigma_n\}) = \mu_h^{(n)}(\sigma_n)$ for all *n* and $\sigma_n \in \Omega_{V_n}$. (see [3])

Proposition 1.[4] The sequence of p – adic probability distributions $\{\mu_h^{(n)}\}_{n\geq 1}$, (n) *n* $\mu_h^{(n)}\}_{n\geq 1}$, determined by formula (2) is consistent if and only if for any $x \in V \setminus \{x_0\}$, the following equation holds:

$$
h_x^2 = \prod_{y \in S(x)} \frac{\theta h_y^2 + 1}{h_y^2 + \theta},\tag{5}
$$

where $\theta = \exp_{p}(2J), \theta \neq 1$.

It is known that Γ^k can be represented as a non-commutative group G_k , which is the free product of $k + 1$ cyclic groups of the second order [2].

Let $G_k / G_k^* = \{H_0, H_1, \dots, H_r\}$ be a factor group, where G_k^* is a normal subgroup of index $r \geq 1$.

Definition 1. A set $h = \{h_x, x \in G_k\}$ of quantities is called G_k^* – periodic if $h_{xy} = h_x$, for all $x \in G_k$ and $y \in G_k^*$.

For $x \in G_k$ we denote by x_{\downarrow} the unique point of the set $\{y \in G_k : \langle x, y \rangle\} \setminus S(x)$.

Definition 2. A set of quantities $h = \{h_x, x \in G_k\}$ is called G_k^* – weakly periodic, if $h_x = h_y$, for any $x \in H_i$, $x_{\downarrow} \in H_j$.

Definition 3. A *p*-adic generalized Gibbs measure μ is said to be G_k^* – (weakly) periodic if it corresponds to a G_k^* – (weakly) periodic h. We call a G_k –periodic measure a translationinvariant measure.

Let

$$
H_A = \left\{ x \in G_k : \sum_{i \in A} \omega_x(a_i) - even \right\},\,
$$

where $\emptyset \neq A \subseteq N_k = \{1, 2, 3, ..., k+1\}$, and $\omega_x(a_i)$ is the number of letters a_i in a word $x \in G_k$. Note that H_A - is a normal subgroup of the G_k (see [2]). Note that a weakly periodic Gibbs measure depends on normal subgroup. According to the selection of the normal subgroup, different weakly periodic Gibbs measures are found (see [3]). The set of weakly periodic Gibbs measures also includes the set of periodic (in particular translation-invariant) Gibbs measures.

We note that in the case $|A| = k + 1$ (where $|A|$ is the number of elements of the set A), i.e., $A = N_k$, the concept of weak periodicity coincides with ordinary periodicity. Therefore, we consider $A \subset N_k$ such that $A \neq N_k$. In this work, we consider the case $|A| = 1$. According to (5) the H_A -weakly periodic set of h_x has the following form

$$
h_x = \begin{cases} h_{00}, & \text{if } x \in H_A, \\ h_{01}, & \text{if } x \in H_A, \\ h_{10}, & \text{if } x \in G_k \setminus H_A, \\ h_{10}, & \text{if } x \in G_k \setminus H_A, \\ h_{11}, & \text{if } x \in G_k \setminus H_A, \\ \end{cases} \qquad (6)
$$

By (5) we have

$$
\begin{cases}\nh_{00}^{2} = \frac{\theta h_{10}^{2} + 1}{\theta + h_{10}^{2}} \cdot \frac{\theta h_{00}^{2} + 1}{\theta + h_{00}^{2}}, \\
h_{01}^{2} = \left(\frac{\theta h_{00}^{2} + 1}{\theta + h_{00}^{2}}\right)^{2}, \\
h_{10}^{2} = \left(\frac{\theta h_{11}^{2} + 1}{\theta + h_{11}^{2}}\right)^{2}, \\
h_{11}^{2} = \frac{\theta h_{11}^{2} + 1}{\theta + h_{11}^{2}} \cdot \frac{\theta h_{01}^{2} + 1}{\theta + h_{01}^{2}}.\n\end{cases}
$$
\n(7)

Consider operator $W: R^4 \to R^4$, defined as follows:

$$
\begin{cases}\nh'_{00}^{2} = \frac{\theta h_{10}^{2} + 1}{\theta + h_{10}^{2}} \cdot \frac{\theta h_{00}^{2} + 1}{\theta + h_{00}^{2}},\\
h'_{01}^{2} = \left(\frac{\theta h_{00}^{2} + 1}{\theta + h_{00}^{2}}\right)^{2},\\
h'_{10}^{2} = \left(\frac{\theta h_{11}^{2} + 1}{\theta + h_{11}^{2}}\right)^{2},\\
h'_{11}^{2} = \frac{\theta h_{11}^{2} + 1}{\theta + h_{11}^{2}} \cdot \frac{\theta h_{01}^{2} + 1}{\theta + h_{01}^{2}}.\n\end{cases}
$$

Note that the system of (7) describes fixed points of the operator W , i.e. $h = W(h)$. **Lemma 1**. The following sets are invariant with respect to the operator *W* :

$$
I_1 = \{ h \in \mathbb{R}^4 : h_{00} = h_{01} = h_{10} = h_{11} \},
$$

$$
I_2 = \{ h \in \mathbb{R}^4 : h_{00} = \pm h_{11}, \ h_{10} = \pm h_{01} \}
$$

Remark 1. [4] *It is easy to see that if the function* $-h_x$ *is a solution to equation (5), then the function* $-h_x$ *is also a solution. These solutions define the same measure* μ_h *which we consider Ising model on the Cayley tree*

of order k .

We shall find H_A -weakly periodic (non-periodic) p – adic generalized Gibbs measure for the Ising model on the set I_2 .

The system of equation (7) has the following solutions

$$
h_{00_{1,2}} = \pm 1,
$$

\n
$$
h_{00_{3,4}} = \pm \frac{\theta - 1 + \sqrt{(\theta + 1)(\theta - 3)}}{2},
$$

\n
$$
h_{00_{5,6}} = \pm \frac{\theta - 1 - \sqrt{(\theta + 1)(\theta - 3)}}{2},
$$

\n
$$
h_{00_{7,8}} = \pm \sqrt{-1}.
$$

Lemma 2. The solutions h_{00} and h_{00} belong to Q_p , iff $p \equiv 1 \pmod{4}$.

Theorem 1. If $p \equiv 1 \pmod{4}$ then there exists at least one weakly periodic (non-periodic) *p* − adic generalized Gibbs measure for the p − adic Izing model on the Cayley tree of order two.

Remark 2. In [5] it was proved that for the Ising model on a Cayley tree of order $k = 2$ with respect to the normal divisor of index 2, there does not exist a weakly periodic (non-translationinvariant) Gibbs measure in real case. In p-adic case in Theorem 1 it was shown that for the Ising model there is at least one new weakly periodic p-adic generalized Gibbs measure.

REFERENCES

1. V. S. Vladimirov, I. V. Volovich and E. V. Zelenov, p -Adic Analysis and Mathematical Physics (*World Sci. Publ., Singapore*,1994).

2. U. A. Rozikov, Gibbs Measures on Cayley Trees *(World Sci. Publ., Singapore*, 2013).

3. Rozikov U. A., Rahmatullaev M. M. Description of weakly periodic Gibbs measures for the Ising model on a Cayley tree. *Theor. Math.Phys.,* 156(2): (2008).

4. Khakimov O. N. On a Generalized p-adic Gibbs Measure for Ising Model on Trees. *p-Adic Numbers, Ultrametric Anal. Appl.,* 6(3), 2014, pp.207-217.

5. Rahmatullaev M. M. "On new weakly periodic Gibbs measures of the Ising model on the Cayley tree of order 6". *J. Phys.: Conf. Ser.,* 697 (2016), 012020, pp.7.