<u>МАТЕМАТИКА</u>

UDC 517.98 https://doi.org/10.52754/16948645 2023 2 187

SOME CONSTRUCTIVE *p*-ADIC GENERALIZED GIBBS MEASURES FOR THE ISING MODEL ON A CAYLEY TREE

Rahmatullaev Muzaffar Muhammadjanovich, DSc., professor, <u>mrahmatullaev@rambler.ru</u> Namangan regional department, Institute of Mathematics named after V.I.Romanovsky, Namangan, Uzbekistan,

> Tukhtabaev Akbarkhuja Mamajonovich, PhD. student, Namangan state university, Namangan, Uzbekistan, <u>akbarxoja.toxtaboyev@mail.ru</u>

Abstract: The paper is devoted to some non-periodic p-adic generalized Gibbs measures for Ising model on a semi-Cayley tree of order $k \ge 1$. We construct uncountable non-periodic p-adic generalized Gibbs measures for the Ising model on a semi-Cayley tree. We study the boundedness of the measures. Furthermore, we find conditions that guarantee existence of the phase transition.

Keyworsds: p-adic numbers, p-adic Ising model, Cayley tree, Gibbs measure, phase transition.

НЕКОТОРЫЕ КОНСТРУКТИВНО *Р*-АДИЧЕСКИЕ ОБОБЩЕННЫЕ МЕРЫ ГИББСА ДЛЯ МОДЕЛИ ИЗИНГА НА ДЕРЕВЕ КЭЛИ

Рахматуллаев Музаффар Мухаммаджанович, д.ф.-м.н., профессор, mrahmatullaev@rambler.ru Наманганское областное отделение Института математики им. В.И. Романовского, г. Наманган, Узбекистан, Тухтабаев Акбархужа Мамажонович, PhD.докторант, Наманганский государственный университет, Наманган, Узбекистан, akbarxoja.toxtaboyev@mail.ru

Аннотация: Статья посвящена изучению некоторых непериодических р -адических обобщенных мер

Гиббса для модели Изинга на полудереве Кэли порядка $k \ge 1$. Построено несчетное количество непериодических p-адических обобщенных мер Гиббса для модели Изинга на полудереве Кэли, а также изучена задача ограниченности этих мер. Кроме того, найдены условия, гарантирующие существование фазового перехода.

Ключевые слова: *p*-адические числа, *p*-адическая модель Изинга, дерево Кэли, мера Гиббса, фазовый переход.

Introduction. Let \mathbb{Q} be the field of rational numbers. For a fixed prime number p, every

rational number $x \neq 0$ can be represented in the form $x = p^r \frac{m}{n}$ where, $r, m, n \in \mathbb{Z}, n > 0$ and m, n are relatively prime with p. The p-adic norm of $x \in \mathbb{Q}$ is given by

$$|x|_{p} = \begin{cases} p^{-r}, & x \neq 0, \\ 0, & x = 0. \end{cases}$$

This norm is non-Archimedean, i.e., it satisfies the strong triangle inequality $|x + y|_p \le \max\{|x|_p, |y|_p\}$ for all $x, y \in \mathbb{Q}$.

The completion of \mathbb{Q} with respect to the *p*-adic norm defines the *p*-adic field \mathbb{Q}_p . Any *p*-adic number $x \neq 0$ can be uniquely represented in the canonical form

$$x = p^{\gamma(x)} (x_0 + x_1 p + x_2 p^2 + ...),$$

where $x_j, \gamma(x) \in \mathbb{Z}, x_0 \neq 0, x_j \in \{0, 1, ..., p-1\}, j = 1, 2, ...$ In this case $|x|_p = p^{-\gamma(x)}$. For $a \in \mathbb{Q}_p$ and r > 0 we denote

$$B(a, r) = \{x \in \mathbb{Q}_p : |x - a|_p < r\}.$$

p-adic *exponential* is defined by

$$\exp_p(x) = \sum_{n=0}^{\infty} \frac{x^n}{n!},$$

which converges for $x \in B\left(0, p^{-\frac{1}{p-1}}\right)$.

We set

$$E_{p} = \left\{ x \in \mathbb{Q}_{p} : |x-1|_{p} < p^{-\frac{1}{p-1}} \right\}.$$

This set is the range of the p-adic exponential function (see e.g. [2]).

Let (X, B) be a measurable space, where B is an algebra of subsets X. A function $\mu: B \to \mathbb{Q}_p$ is said to be a p-adic measure if for any $A_1, A_2, \dots, A_n \in B$ such that $A_i \cap A_j = \emptyset$, $i \neq j$, the following holds:

$$\mu\left(\bigcup_{i=1}^{n}A_{i}\right) = \sum_{i=1}^{n}\mu(A_{i}).$$

A *p*-adic measure μ is called bounded if $\sup\{|\mu(A)|_p : A \in B\} < \infty$. It is said that *p*-adic measure is *probabilistic* if $\mu(X) = 1$.

Let $\Gamma_{+}^{k} = (V, L)$, be a semi-infinite Cayley tree [1] of order $k \ge 1$ with the root $x^{0} \in V$ (whose each vertex has exactly k + 1 edges, except for the root x^{0} , which has k edges). Here V is the set of vertices and L is the set of edges. The vertices x and y are called nearest neighbors and they are denoted by $l = \langle x, y \rangle$ if there exists an edge l connecting them. A collection of the pairs $\langle x, x_1 \rangle$, $\langle x_1, x_2 \rangle$,..., $\langle x_{d-1}, y \rangle$ is called a path

from the point x to the point y. The distance d(x, y), $x, y \in V$, on the semi-Cayley tree, is the number of edges of the shortest path from x to y.

We set

$$W_n = \{ x \in V \mid d(x, x^0) = n \}, \quad V_n = \{ x \in V \mid d(x, x^0) \le n \},$$
$$L_n = \{ l = \in L \mid x, y \in V_n \}.$$

The set of direct successors of $x \in W_n$ is defined by

$$S(x) = \{ y \in W_{n+1} : d(x, y) = 1 \}.$$

We recall a coordinate structure in Γ_{+}^{k} : every vertex x (except for x^{0}) of Γ_{+}^{k} has coordinates $(i_{1}, i_{2}, ..., i_{n})$, here $i_{m} \in \{1, 2, ..., k\}$, $m = \overline{1, n}$, and for the vertex x^{0} we put (0). Namely, the symbol (0) constitutes level 0, and the sites $(i_{1}, i_{2}, ..., i_{n})$ form level n (i.e. $d(x^{0}, x) = n$) of the lattice. Let us define on Γ_{+}^{k} binary operation $\circ: \Gamma_{+}^{k} \times \Gamma_{+}^{k} \longrightarrow \Gamma_{+}^{k}$ as follows: for any two elements $x = (i_{1}, i_{2}, ..., i_{n})$ and $y = (j_{1}, j_{2}, ..., j_{m})$ put $x \circ y = (i_{1}, i_{2}, ..., i_{n}) \circ (j_{1}, j_{2}, ..., j_{m}) = (i_{1}, i_{2}, ..., i_{n}, j_{1}, j_{2}, ..., j_{m})$

By means of the defined operation Γ_{+}^{k} becomes a noncommutative semigroup with a unit. Let us denote this group by (G^{k}, \circ) . Using this semigroup structure one defines translations $\tau_{g}: G^{k} \to G^{k}, g \in G^{k}$ by $\tau_{g}(x) = g \circ x$.

Let $G \subset G^k$ be a sub-semigroup of G^k and $h: G^k \to Y$ be a Y-valued function defined on G^k . We say that h is G-periodic if $h(\tau_g(x)) = h(x)$ for all $g \in G$ and $x \in G^k$. Any G^k periodic function is called *translation-invariant*. Now for each $m \ge 2$ we put $G_m = \{x \in G^k : d(x, x^0) \equiv 0 \pmod{m}\}$. One can check that G_m is a sub-semigroup of $x \in G^k$

We consider *p*-adic Ising model on the semi-infinite Cayley tree Γ_{+}^{k} . Let \mathbb{Q}_{p} be a field of *p*-adic numbers and $\Phi = \{-1,1\}$. A configuration σ on $A \subseteq V$ is defined as a function $x \in A \to \sigma(x) \in \Phi$. The set of all configurations on *A* is denoted by $\Omega_{A} = \Phi^{A}$. For given configurations $\sigma_{n-1} \in \Omega_{V_{n}}$ and $\varphi^{(n)} \in \Omega_{W_{n}}$ we define a configuration in $\Omega_{V_{n}}$ as follows

$$(\sigma_{n-1} \lor \omega_n)(x) = \begin{cases} \sigma_{n-1}(x), & \text{if } x \in V_{n-1} \\ \varphi^{(n)}(x), & \text{if } x \in W_n. \end{cases}$$

A formal *p*-adic Hamiltonian $H: \Omega \to \mathbb{Q}_p$ of the Ising model is defined by

$$H(\sigma) = J \sum_{\langle x, y \rangle \in L} \sigma(x) \sigma(y) , \qquad (1)$$

where $J \in B\left(0, p^{\frac{1}{1-p}}\right)$ for any $\langle x, y \rangle \in L$.

We are aiming to study some non-periodic p-adic generalized Gibbs measures for the Ising model on a Cayley tree. Our approach is based on properties Markov random fields on the Cayley tree.

Let $h: x \in V \setminus \{x^0\} \to h_x \in \mathbb{Q}_p$ be a function. We define p-adic probability generalized Gibbs distribution $\mu_h^{(n)}$ on Ω_{V_n} by

$$\mu_{h}^{(n)}(\sigma_{n}) = \frac{1}{Z_{n}^{(h)}} \exp_{p} \left\{ H_{n}(\sigma_{n}) \right\} \prod_{x \in W_{n}} h_{x}^{\sigma(x)}, \ n = 1, 2, ...,$$
(2)

where $Z_n^{(h)}$ is corresponding normalizing constant:

$$Z_n^{(h)} = \sum_{\sigma \in \Omega_{V_n}} \exp\left\{H_n(\sigma_n)\right\} \prod_{x \in W_n} h_x^{\sigma(x)}.$$
(3)

The compatibility conditions for $\mu_h^{(n)}(\sigma_n)$, $n \ge 1$ are given by the equality

$$\sum_{\varphi^{(n)} \in \Omega_{W_n}} \mu_h^{(n)}(\sigma_{n-1} \lor \varphi^{(n)}) = \mu_h^{(n-1)}(\sigma_{n-1}).$$
(4)

In this case, by the *p*-adic analogue of Kolmogorov theorem ([3]) there exists a unique measure μ_h on the set Ω such that $\mu_h(\{\sigma \mid_{V_n} \equiv \sigma_n\}) = \mu_h^{(n-1)}(\sigma_{n-1})$, for all *n* and $\sigma_{n-1} \in \Omega_{V_{n-1}}$.

A limiting p-adic distribution generated by (2) is called p-adic generalized Gibbs measure [4].

If there are two different measures μ_s , μ_h and they are bounded, then one says that there is a *quasi-phase transition*. If there are at least two distinct p-adic generalized Gibbs measures μ and ν such that μ is bounded and ν is unbounded, then one says that a *phase transition* occurs. Moreover, if there is a sequence of sets A_n such that $A_n \in \Omega_{V_n}$ with $|\mu(A_n)|_p \rightarrow 0$ and $|\nu(A_n)|_p \rightarrow \infty$ as $n \rightarrow \infty$, then there occurs a *strong phase transition* [4].

Theorem 1. [4] The sequence of p-adic distributions $\{\mu_h^{(n)}(\sigma_n)\}_{n\geq 1}$ determined by formula (2) is consistent if and only if for any $x \in V \setminus \{x^0\}$, the following equation holds

$$h_{x}^{2} = \prod_{y \in S(x)} \frac{\theta h_{y}^{2} + 1}{h_{y}^{2} + \theta}$$
(5)

where $\theta = \exp\{2J\}, \ \theta \neq 1$.

Main results. On the semi-Cayley tree of order two, we denote by $h_i^{(t)}$ (i = 0, 1, 2) and $h_j^{(p)}$ (j = 1, 2) the translation-invariant and G_2 -periodic solutions of the equation (5), respectively. It is known [4] that if $p \equiv 1 \pmod{4}$ then

$$h_0^{(t)} = 1, \ h_{1,2}^{(t)} = \frac{\theta - 1 \pm \sqrt{(\theta - 3)(\theta + 1)}}{2}, \ h_{1,2}^{(p)} = \frac{1 - \theta \pm \sqrt{(\theta - 1)^2 - 4\theta^2}}{2\theta}$$
(6)

Let $k \ge 3$, $k_0 = 2$. For $x \in V$, by $S_{k_0}(x)$ we denote an arbitrary set of k_0 vertices of the set S(x), and remaining $k - k_0$ vertices is denoted by $S_{k-k_0}(x)$. Let $k - k_0 = a + b + c$, where a and b are even, c is even or odd. We define the set of quantities $h = \{h_x, x \in V\}$ (where $h_x \in \{1, h_1^{(t)}, h_2^{(t)}, h_1^{(p)}, h_2^{(p)}\}$) as follows:

if at vertex x we have $h_x = h_i^{(t)}$ (i = 1, 2) $(h_x = h_i^{(p)}$ or $h_x = 1$), then the function h_y ,

which gives *p*-adic values to each vertex $y \in S(x)$ is defined by the following rule (7) (resp. (8) or (9)).

$$h_{y} = \begin{cases} h_{i}^{(t)} & \text{on } a/2+2 \text{ vertices of } S(x), \\ h_{3-i}^{(t)} & \text{on } a/2 & \text{vertices of } S(x), \\ h_{i}^{(p)} & \text{on } b/2 & \text{vertices of } S(x), \\ 1 & \text{on } c & \text{vertices of } S(x), \\ 1 & \text{on } c & \text{vertices of } S(x), \\ 1 & \text{on } a/2 & \text{vertices of } S(x), \\ h_{3-i}^{(t)} & \text{on } a/2 & \text{vertices of } S(x), \\ h_{3-i}^{(t)} & \text{on } b/2 & \text{vertices of } S(x), \\ h_{i}^{(p)} & \text{on } b/2 & \text{vertices of } S(x), \\ 1 & \text{on } c & \text{vertices of } S(x), \\ 1 & \text{on } c & \text{vertices of } S(x), \\ 1 & \text{on } c & \text{vertices of } S(x), \\ 1 & \text{on } c & \text{vertices of } S(x), \\ 1 & \text{on } c & \text{vertices of } S(x), \\ 1 & \text{on } c & \text{vertices of } S(x), \\ h_{3-i}^{(t)} & \text{on } a/2 & \text{vertices of } S(x), \\ h_{y} = \begin{cases} h_{i}^{(t)} & \text{on } a/2 & \text{vertices of } S(x), \\ h_{3-i}^{(t)} & \text{on } a/2 & \text{vertices of } S(x), \\ h_{i}^{(p)} & \text{on } b/2 & \text{vertices of } S(x), \\ h_{i}^{(p)} & \text{on } b/2 & \text{vertices of } S(x), \\ 1 & \text{on } c+2 & \text{vertices of } S(x), \\ 1 & \text{on } c+2 & \text{vertices of } S(x). \end{cases}$$
(9)

Lemma 1. Let $p \equiv 1 \pmod{4}$. Then any set of quantities according to the rules (7), (8) and (9) on the Cayley tree Γ_{+}^{k} satisfy the functional equation (5).

Remark 1. 1) If a = b = c = 0 in (7) and (9) then *p*-adic generalized Gibbs measures corresponding to set of quantities h_x are translation-invariant, the figure for case (8), we get *p*-adic generalized $G_2^{(2)}$ -periodic Gibbs measures (see [4]);

2) If a = b = 0, $c \neq 0$ in (9) and (7), (8) then *p*-adic generalized Gibbs measures corresponding to set of quantities h_x are translation-invariant (see [4]) and ART Gibbs measures, respectively (see [6]);

3) If b = c = 0, $a \neq 0$ in (7) then *p* -adic generalized Gibbs measures corresponding to set of quantities h_x are (k_0) -translation-invariant (see [7]);

4) If $a = c = 0, b \neq 0$ in (8) then *p* -adic generalized Gibbs measures corresponding to set of quantities h_x are (k_0) -periodic (see [7]);

5) In other cases, we get new measures except to previous known ones.

In real case Bleher-Ganikhodjaev construction was studied in [8]. We are going to investigate this construction in p-adic case. Consider an infinite path $\pi = x^0 = x_0 < x_1 < ...$ on the semi-Cayley tree Γ_+^k (the notation x < y meaning that paths from the root to y go through x). We assign the set of p-adic numbers $h^{\pi} = \{h_x^{\pi}, x \in V\}$ satisfying the equation (5) to the path π . For $n = 1, 2, ..., x \in W_n$, the set h^{π} is unambiguously defined by the conditions

$$h_x^{\pi} = \begin{cases} \frac{1}{h_*}, & \text{if } x \prec x_n, x \in W_n, \\ h_*, & \text{if } x_n \prec x, x \in W_n, \end{cases}$$
(10)

where $x \prec x_n$ (resp. $x_n \prec x$) means that x is on the left (resp. right) from the path π and h_* is translation-invariant solution of the equation (5).

Lemma 2. For any infinite path π , there exists a unique set of numbers $h^{\pi} = \{h_x^{\pi}, x \in V\}$ satisfying (5) and (10).

Remark 2. The measure which is defined in Lemma 2, depends on the path π . The cardinality of the measures is uncountable (see [8]).

Theorem 2. Let $p \equiv 1 \pmod{4}$. Then for the measures correspond to the set of quantities according to the rules (7), (8) and (9) the followings hold

1) If $a^2 + b^2 \neq 0$, then the measures are unbounded;

2) If a = b = 0, then the measures are bounded.

Theorem 3. Let $p \ge 3$, h_x^{π} be the set of quantities defined by (10). Then the measures correspond to the set of quantities h_x^{π} are bounded if and only if $h_* = 1$.

Theorem 4. Let $p \ge 3$, \mathbb{Q}_p be a field of p-adic numbers in which there exist translation-invariant solutions of the functional equation (5). Then there exists a phase transition in the field \mathbb{Q}_p .

REFERENCES

 U.A.Rozikov, Gibbs Measures on Cayley Trees, World Scientific Publisher, Singapore, 2013.
 V.S.Vladimirov, I.V.Volovich and E.V.Zelenov, *p*-Adic Analysis and Mathematical Physics, World Scientific Publisher, Singapore, 1994.

3. N.N.Ganikhodjayev, F.M.Mukhamedov, U.A.Rozikov, Existence of phase transition for the Potts p-adic model on the set \mathbb{Z} . Theor. Math. Phys. 130(2002), No.3, 425-431.

4. O.N.Khakimov, On a generalized p-adic Gibbs measure for Ising model on trees, p-Adic Numbers Ultrametric Anal. Appl., 6(3), 207-217, 2014.

5. F.M.Mukhamedov, On p-adic quasi Gibbs measures for q + 1-state Potts model on the Cayley tree, p-Adic Numbers, Ultrametric Anal. Appl., (2010), 241-251.

6. H.Akin, U.A.Rozikov, S.Temir, A new set of limiting Gibbs measures for the Ising model on a Cayley tree, J.Stat. Phys., 142, 314-321, 2011.

7. M.M.Rahmatullaev and A.M.Tukhtabaev, Non periodic p-adic generalized Gibbs measure for the Ising model, p-Adic Numbers Ultrametric Anal. Appl., 11, 319-327, 2019.

8. P.M.Bleher and N.N.Ganikhodjaev, On pure phases of the Ising model on the Bethe lattice, Theor. Probab. Appl., 35, 216-227, 1990.