МАТЕМАТИКА

UDC 517.98 https://doi.org/10.52754/16948645_2023_2_187

SOME CONSTRUCTIVE *^p* **-ADIC GENERALIZED GIBBS MEASURES FOR THE ISING MODEL ON A CAYLEY TREE**

Rahmatullaev Muzaffar Muhammadjanovich, DSc., professor, mrahmatullaev@rambler.ru Namangan regional department, Institute of Mathematics named after V.I.Romanovsky, Namangan, Uzbekistan,

> *Tukhtabaev Akbarkhuja Mamajonovich, PhD. student, Namangan state university, Namangan, Uzbekistan, akbarxoja.toxtaboyev@mail.ru*

Abstract: The paper is devoted to some non-periodic p -adic generalized Gibbs measures for Ising model

on a semi-Cayley tree of order $k \geq 1$. We construct uncountable non-periodic p -adic generalized Gibbs measures *for the Ising model on a semi-Cayley tree. We study the boundedness of the measures. Furthermore, we find conditions that guarantee existence of the phase transition.*

Keyworsds: p-adic numbers, p-adic Ising model, Cayley tree, Gibbs measure, phase transition.

НЕКОТОРЫЕ КОНСТРУКТИВНО *P***-АДИЧЕСКИЕ ОБОБЩЕННЫЕ МЕРЫ ГИББСА ДЛЯ МОДЕЛИ ИЗИНГА НА ДЕРЕВЕ КЭЛИ**

Рахматуллаев Музаффар Мухаммаджанович, д.ф.-м.н., профессор, mrahmatullaev@rambler.ru Наманганское областное отделение Института математики им. В.И. Романовского, г. Наманган, Узбекистан, Тухтабаев Акбархужа Мамажонович, PhD.докторант, Наманганский государственный университет, Наманган, Узбекистан, akbarxoja.toxtaboyev@mail.ru

Аннотация: Статья посвящена изучению некоторых непериодических p -адических обобщенных мер

Гиббса для модели Изинга на полудереве Кэли порядка k 1 *. Построено несчетное количество непериодических p -адических обобщенных мер Гиббса для модели Изинга на полудереве Кэли, а также изучена задача ограниченности этих мер. Кроме того, найдены условия, гарантирующие существование*

фазового перехода. Ключевые слова: p-адические числа, p-адическая модель Изинга, дерево Кэли, мера Гиббса, фазовый переход.

Introduction. Let $\mathbb Q$ be the field of rational numbers. For a fixed prime number p , every

rational number $x \neq 0$ can be represented in the form $x = p^r \frac{m}{n}$ *^x p n* $=p' \stackrel{\cdots}{-}$ where, *r*, *m*, $n \in \mathbb{Z}$, $n > 0$ and *m*, *n* are relatively prime with *p*. The *p*-adic norm of $x \in \mathbb{Q}$ is given by

$$
|x|_{p} = \begin{cases} p^{-r}, & x \neq 0, \\ 0, & x = 0. \end{cases}
$$

This norm is non-Archimedean, i.e., it satisfies the strong triangle inequality Inis norm is non-Archimedean, i.e., 1
 $|x + y|_p \le \max\{|x|_p, |y|_p\}$ for all $x, y \in \mathbb{Q}$.

The completion of $\mathbb Q$ with respect to the p -adic norm defines the p -adic field $\mathbb Q_p$. Any p -adic number $x \neq 0$ can be uniquely represented in the canonical form

$$
x = p^{\gamma(x)}(x_0 + x_1 p + x_2 p^2 + ...),
$$

where x_j , $\gamma(x) \in \mathbb{Z}$, $x_0 \neq 0$, $x_j \in \{0,1,...,p-1\}$, $j = 1,2,...$. In this case $|x|_p = p^{-r(x)}$. For $a \in \mathbb{Q}_p$ and $r > 0$ we denote

$$
B(a, r) = \{x \in \mathbb{Q}_p : |x - a|_p < r\}.
$$

^p -adic *exponential* is defined by

$$
\exp_p(x) = \sum_{n=0}^{\infty} \frac{x^n}{n!},
$$

which converges for 1 $x \in B$ $\left(0, p^{-\frac{1}{p-1}}\right)$ $\in B\left[0, p^{-p-1}\right].$

We set

$$
E_p = \left\{ x \in \mathbb{Q}_p : ||x - 1||_p < p^{-\frac{1}{p-1}} \right\}.
$$

This set is the range of the p -adic exponential function (see e.g. [2]).

Let (X, B) be a measurable space, where B is an algebra of subsets X. A function $\mu: B \to \mathbb{Q}_p$ is said to be a p-adic measure if for any $A_1, A_2, ..., A_n \in B$ such that $A_i \cap A_j = \emptyset$, $i \neq j$, the following holds:

$$
\mu\left(\bigcup_{i=1}^n A_i\right) = \sum_{i=1}^n \mu(A_i).
$$

A p-adic measure μ is called bounded if $\sup\{|\mu(A)|_p : A \in B\} < \infty$. It is said that p-adic measure is *probabilistic* if $\mu(X) = 1$.

Let $\Gamma_{+}^{k} = (V, L)$, be a semi-infinite Cayley tree [1] of order $k \ge 1$ with the root $x^0 \in V$ (whose each vertex has exactly $k+1$ edges, except for the root x^0 , which has k edges). Here V is the set of vertices and L is the set of edges. The vertices x and y are called nearest neighbors and they are denoted by $l = \langle x, y \rangle$ if there exists an edge l connecting them. A collection of the pairs $\langle x, x_1 \rangle$, $\langle x_1, x_2 \rangle$,..., $\langle x_{d-1}, y \rangle$ is called a path from the point x to the point y. The distance $d(x, y)$, $x, y \in V$, on the semi-Cayley tree, is the number of edges of the shortest path from *x* to *y* .

We set

$$
W_n = \{ x \in V \mid d(x, x^0) = n \}, \quad V_n = \{ x \in V \mid d(x, x^0) \le n \},
$$

$$
L_n = \{ l = \in L \mid x, y \in V_n \}.
$$

The set of direct successors of $x \in W_n$ is defined by

$$
S(x) = \{ y \in W_{n+1} : d(x, y) = 1 \}.
$$

We recall a coordinate structure in Γ_{+}^{k} : every vertex x (except for x^{0}) of Γ_{+}^{k} has coordinates $(i_1, i_2, ..., i_n)$, here $i_m \in \{1, 2, ..., k\}$, $m = 1, n$, and for the vertex x^0 we put (0). Namely, the symbol (0) constitutes level 0, and the sites $(i_1, i_2, ..., i_n)$ form level *n* (i.e. $d(x^0, x) = n$) of the lattice. Let us define on Γ_+^k binary operation $\circ: \Gamma_+^k \times \Gamma_+^k \to \Gamma_+^k$ as follows: for any two elements $x = (i_1, i_2, \dots, i_n)$ and $y = (j_1, j_2, \dots, j_m)$ put $x \circ y = (i_1, i_2, ..., i_n) \circ (j_1, j_2, ..., j_m) = (i_1, i_2, ..., i_n, j_1, j_2, ..., j_m)$

By means of the defined operation Γ_{+}^{k} becomes a noncommutative semigroup with a unit. Let us denote this group by (G^k, \circ) . Using this semigroup structure one defines translations $\tau_{g}: G^{k} \rightarrow G^{k}, g \in G^{k}$ by $\tau_{g}(x) = g \circ x$.

Let $G \subset G^k$ be a sub-semigroup of G^k and $h: G^k \to Y$ be a Y-valued function defined on G^k . We say that h is G-periodic if $h(\tau_g(x)) = h(x)$ for all $g \in G$ and $x \in G^k$. Any G^k periodic function is called *translation-invariant*. Now for each $m \ge 2$ we put $G_m = \{x \in G^k : d(x, x^0) \equiv 0 \pmod{m}\}$. One can check that G_m is a sub-semigroup of $x \in G^k$.

We consider p-adic Ising model on the semi-infinite Cayley tree Γ_{+}^{k} . Let \mathbb{Q}_p be a field of p-adic numbers and $\Phi = \{-1,1\}$. A configuration σ on $A \subseteq V$ is defined as a function $x \in A \rightarrow \sigma(x) \in \Phi$. The set of all configurations on A is denoted by $\Omega_A = \Phi^A$. For given configurations $\sigma_{n-1} \in \Omega_{V_n}$ and $\varphi^{(n)}$ $\varphi^{(n)} \in \Omega_{W_n}$ we define a configuration in Ω_{V_n} as follows

$$
(\sigma_{n-1} \vee \omega_n)(x) = \begin{cases} \sigma_{n-1}(x), & \text{if } x \in V_{n-1}, \\ \varphi^{(n)}(x), & \text{if } x \in W_n. \end{cases}
$$

A formal p-adic Hamiltonian $H : \Omega \to \mathbb{Q}_p$ of the Ising model is defined by

$$
H(\sigma) = J \sum_{\langle x, y \rangle \in L} \sigma(x) \sigma(y) ,
$$

where $J \in B\left(0, p^{\frac{1}{1-p}}\right)$ for any $\langle x, y \rangle \in L$.

We are aiming to study some non-periodic p -adic generalized Gibbs measures for the Ising model on a Cayley tree. Our approach is based on properties Markov random fields on the Cayley tree.

Let $h: x \in V \setminus \{x^0\} \to h_x \in \mathbb{Q}_p$ be a function. We define p -adic probability generalized Gibbs distribution $\mu_h^{(n)}$ on Ω_{V_n} by

$$
\mu_h^{(n)}(\sigma_n) = \frac{1}{Z_n^{(h)}} \exp_p \left\{ H_n(\sigma_n) \right\} \prod_{x \in W_n} h_x^{\sigma(x)}, \ n = 1, 2, \dots,
$$
 (2)

where $Z_n^{(h)}$ is corresponding normalizing constant:

$$
Z_n^{(h)} = \sum_{\sigma \in \Omega_{V_n}} \exp\{H_n(\sigma_n)\} \prod_{x \in W_n} h_x^{\sigma(x)}.
$$
 (3)

The compatibility conditions for $\mu_h^{(n)}(\sigma_n)$, $n \ge 1$ are given by the equality

$$
\sum_{\varphi^{(n)} \in \Omega_{W_n}} \mu_h^{(n)}(\sigma_{n-1} \vee \varphi^{(n)}) = \mu_h^{(n-1)}(\sigma_{n-1}). \tag{4}
$$

In this case, by the p -adic analogue of Kolmogorov theorem (3)) there exists a unique measure μ_h on the set Ω such that $\mu_h(\{\sigma|_{V_n} \equiv \sigma_n\}) = \mu_h^{(n-1)}(\sigma_{n-1})$ $\mu_h\left(\left\{\sigma\right|_{V_n} \equiv \sigma_n\right\}\right) = \mu_h^{(n-1)}\left(\sigma_{n-1}\right)$, for all *n* and $\sigma_{\scriptscriptstyle n\text{-}1} \in \Omega_{\scriptscriptstyle V_{\scriptscriptstyle n\text{-}1}}.$

A limiting *p* -adic distribution generated by (2) is called *p* -adic *generalized Gibbs measure* [4].

If there are two different measures μ_s , μ_h and they are bounded, then one says that there is a *quasi-phase transition*. If there are at least two distinct *p* -adic generalized Gibbs measures μ and ν such that μ is bounded and ν is unbounded, then one says that a *phase transition* occurs. Moreover, if there is a sequence of sets A_n such that $A_n \in \Omega_{V_n}$ with $|\mu(A_n)|_p \to 0$ and $|\nu(A_n)|_p \to \infty$ as $n \to \infty$, then there occurs a *strong phase transition* [4].

Theorem 1. [4] *The sequence of p -adic distributions* $\{ \mu_h^{(n)}(\sigma_n) \}_{n=1}^N$ $\mu_h^{(n)}(\sigma_n)$ _{n>1} determined by *formula (2) is consistent if and only if for any* $x \in V \setminus \{x^0\}$ *, the following equation holds*

$$
h_x^2 = \prod_{y \in S(x)} \frac{\theta h_y^2 + 1}{h_y^2 + \theta} \tag{5}
$$

where $\theta = \exp\{2J\}$, $\theta \neq 1$.

Main results. On the semi-Cayley tree of order two, we denote by $h_i^{(t)}$ ($i = 0, 1, 2$) and $h_j^{(p)}$ ($j = 1, 2$) the translation-invariant and G_2 -periodic solutions of the equation (5), respectively. It is known [4] that if $p \equiv 1 \pmod{4}$ then

$$
h_0^{(t)} = 1, h_{1,2}^{(t)} = \frac{\theta - 1 \pm \sqrt{(\theta - 3)(\theta + 1)}}{2}, h_{1,2}^{(p)} = \frac{1 - \theta \pm \sqrt{(\theta - 1)^2 - 4\theta^2}}{2\theta} (6)
$$

Let $k \geq 3$, $k_0 = 2$. For $x \in V$, by $S_{k_0}(x)$ we denote an arbitrary set of k_0 vertices of the set $S(x)$, and remaining $k - k_0$ vertices is denoted by $S_{k-k_0}(x)$. Let $k - k_0 = a + b + c$, where *a* and *b* are even, *c* is even or odd. We define the set of quantities $h = \{h_x, x \in V\}$ $(\text{where } h_x \in \{1, h_1^{(t)}, h_2^{(t)}, h_1^{(p)}, h_2^{(p)}\}) \text{ as follows:}$

if at vertex x we have $h_x = h_i^{(t)}$ $(i = 1, 2)$ $(h_x = h_i^{(p)}$ or $h_x = 1)$, then the function h_y ,

which gives p-adic values to each vertex $y \in S(x)$ is defined by the following rule (7) (resp. (8) or (9)).

$$
h_y =\begin{cases} h_i^{(t)} & \text{on} \quad a/2+2 \quad \text{vertices of} \quad S(x), \\ h_{3-i}^{(t)} & \text{on} \quad b/2 \quad \text{vertices of} \quad S(x), \\ h_{3-i}^{(p)} & \text{on} \quad b/2 \quad \text{vertices of} \quad S(x), \\ 1 & \text{on} \quad c \quad \text{vertices of} \quad S(x), \\ 1 & \text{on} \quad a/2 \quad \text{vertices of} \quad S(x), \\ h_{3-i}^{(t)} & \text{on} \quad a/2 \quad \text{vertices of} \quad S(x), \\ h_{3-i}^{(p)} & \text{on} \quad b/2 \quad \text{vertices of} \quad S(x), \\ h_{3-i}^{(p)} & \text{on} \quad b/2+2 \quad \text{vertices of} \quad S(x), \\ 1 & \text{on} \quad c \quad \text{vertices of} \quad S(x), \\ 1 & \text{on} \quad c \quad \text{vertices of} \quad S(x), \\ h_{3-i}^{(t)} & \text{on} \quad a/2 \quad \text{vertices of} \quad S(x), \\ h_{3-i}^{(t)} & \text{on} \quad a/2 \quad \text{vertices of} \quad S(x), \\ h_{3-i}^{(p)} & \text{on} \quad b/2 \quad \text{vertices of} \quad S(x), \\ h_{3-i}^{(p)} & \text{on} \quad b/2 \quad \text{vertices of} \quad S(x), \\ 1 & \text{on} \quad c+2 \quad \text{vertices of} \quad S(x). \end{cases} \tag{9}
$$

Lemma 1. Let $p \equiv 1 \pmod{4}$. Then any set of quantities according to the rules (7), (8) and (9) on the Cayley tree Γ^k_+ satisfy the functional equation (5).

Remark 1. 1) If $a = b = c = 0$ in (7) and (9) then p-adic generalized Gibbs measures corresponding to set of quantities h_x are translation-invariant, the figure for case (8), we get padic generalized $G_2^{(2)}$ -periodic Gibbs measures (see [4]);

2) If $a = b = 0$, $c \ne 0$ in (9) and (7), (8) then p-adic generalized Gibbs measures corresponding to set of quantities h_x are translation-invariant (see [4]) and ART Gibbs measures, respectively (see [6]);

3) If $b = c = 0$, $a \ne 0$ in (7) then p-adic generalized Gibbs measures corresponding to set of quantities h_x are (k_0) -translation-invariant (see [7]);

4) If $a = c = 0, b \ne 0$ in (8) then p-adic generalized Gibbs measures corresponding to set of quantities h_x are $(k₀)$ -periodic (see [7]);

5) In other cases, we get new measures except to previous known ones.

In real case Bleher-Ganikhodjaev construction was studied in [8]. We are going to investigate this construction in p-adic case. Consider an infinite path $\pi = x^0 = x_0 < x_1 < ...$ on the semi-Cayley tree Γ^k_+ (the notation $x < y$ meaning that paths from the root to y go through *x*). We assign the set of p -adic numbers $h^{\pi} = \{h^{\pi}_x, x \in V\}$ satisfying the equation (5) to the path π . For $n = 1, 2, ..., x \in W_n$, the set h^{π} is unambiguously defined by the conditions

$$
h_x^{\pi} = \begin{cases} \frac{1}{h_*}, & \text{if } x \prec x_n, \ x \in W_n, \\ h_*, & \text{if } x_n \prec x, \ x \in W_n, \end{cases} \tag{10}
$$

where $x \prec x_n$ (resp. $x_n \prec x$) means that x is on the left (resp. right) from the path π and h_{\ast} is translation-invariant solution of the equation (5).

Lemma 2. For any infinite path π , there exists a unique set of numbers $h^{\pi} = \{h^{\pi}_x, x \in V\}$ satisfying (5) and (10).

Remark 2. The measure which is defined in Lemma 2, depends on the path π . The cardinality of the measures is uncountable (see [8]).

Theorem 2. Let $p \equiv 1 \pmod{4}$. Then for the measures correspond to the set of *quantities according to the rules (7), (8) and (9) the followings hold*

1) If $a^2 + b^2 \neq 0$, then the measures are unbounded;

2) If $a = b = 0$, then the measures are bounded.

Theorem 3. Let $p \geq 3$, h_x^{π} be the set of quantities defined by (10). Then the measures *correspond to the set of quantities* h_{x}^{x} are bounded if and only if $h_{*} = 1$.

Theorem 4. Let $p \geq 3$, \mathbb{Q}_p be a field of p -adic numbers in which there exist *translation-invariant solutions of the functional equation (5). Then there exists a phase transition in the field* \mathbb{Q}_p .

REFERENCES

1. U.A.Rozikov, Gibbs Measures on Cayley Trees, World Scientific Publisher, Singapore, 2013. 2. V.S.Vladimirov, I.V.Volovich and E.V.Zelenov, *p* -Adic Analysis and Mathematical Physics, World Scientific Publisher, Singapore, 1994.

3. N.N.Ganikhodjayev, F.M.Mukhamedov, U.A.Rozikov, Existence of phase transition for the Potts p -adic model on the set $\mathbb Z$. Theor. Math. Phys. 130(2002), No.3, 425-431.

4. O.N.Khakimov, On a generalized *p* -adic Gibbs measure for Ising model on trees, *p* -Adic Numbers Ultrametric Anal. Appl., 6(3), 207-217, 2014.

5. F.M.Mukhamedov, On p -adic quasi Gibbs measures for $q + 1$ -state Potts model on the Cayley tree, *p* -Adic Numbers, Ultrametric Anal. Appl., (2010), 241-251.

6. H.Akin, U.A.Rozikov, S.Temir, A new set of limiting Gibbs measures for the Ising model on a Cayley tree, J.Stat. Phys., 142, 314-321, 2011.

7. M.M.Rahmatullaev and A.M.Tukhtabaev, Non periodic *p* -adic generalized Gibbs measure for the Ising model, *p* -Adic Numbers Ultrametric Anal. Appl., 11, 319-327, 2019.

8. P.M.Bleher and N.N.Ganikhodjaev, On pure phases of the Ising model on the Bethe lattice, Theor. Probab. Appl., 35, 216-227, 1990.