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Abstract: We consider a SOS (solid-on-solid) model with nearest-neighbor interaction J,, prolonged next-
nearest-neighbor interaction J, and one level next-nearest-neighbor interaction J;, where the spin takes values in

the set @ ={0,1, 2} on a Cayley tree of order three. In the paper, we study translation-invariant and periodic ground

states of the model SOS.
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Annomayus: Mot paccmampusaem moodenv SOS (solid-on-solid) ¢ ezaumoodeiicmeuem bruscaiiuux coceoetl
L' Onumenvuviv 63aumoodeiicmeuem credyiowux Gaudcaimux cocedeii 2 u 00HOYPOBHESHIM 63AUMOOCHCINEUEM

cnedyowux oaudcatiuux coceoetl I, 20e cnuH npuHUMAaem 3HA4eHus 8 MHOJCecmeae ©={01,2} Ha depege Kanu
nopsaoka mpu. B cmamve uccrnedyiomesa mpanciayuoHHO-UH8ApUaHmMHble U NEPUOOUYECKUE OCHOBHbIE COCIOAHUS
mooenu SOS.

Knroueevie cnosa: /lepeso Kanu, kongueypayus, KouKypupyrouue 3aumooelicmeuss Oauxcauuux coceoet,
MPAHCAYUOHHO-UHBAPUAHINHOE U NEPUOOULECKOE OCHOBHOE COCMOSIHUE.

It is known that a phase diagram of Gibbs measures for a Hamiltonian is close to the phase
diagram of isolated (stable) ground states of this Hamiltonian. At low temperatures, a periodic
ground state corresponds to a periodic Gibbs measure (see, e.g., [1]). It leads us to investigate the
problem of description of periodic and weakly periodic ground states. In this paper, we study
periodic ground states for the SOS model with nearest-neighbor and competing binary interactions
on a Cayley tree of order three.

Let T'* = (V, L) bethe Cayley tree of order k >1, i.e., an infinite tree such that exactly k +1

edges are incident to each vertex. Here V is the set of vertices and L is the set of edges of r“ it
is known (see [2]) that there exists a one-to-one correspondence between the set V' of vertices of
the Cayley tree of order k >1 and the group G, of the free products of K +1 cyclic groups {e,a }
, i=1,...,k+1 of the second order (i.e. &> =e, a ' =a,) with generators @ ,a,,...,a_,, .
For an arbitrary vertex X° €V, we put
W, ={xeV|d(x,x")=n},V. ={xeV [d(x,x°) <n},
where d(X,Y) is a natural distance, being the number of nearest-neighbor pairs of the

minimal path between the vertices X and y. L denotes the set of edges in V_. The fixed vertex

0

X" is called the O-th level and the vertices in W_are called the Nn-th level. For the sake of

simplicity, we put | x|=d(x,x%), xeV.
Two vertices X,y €V are called the next-nearest-neighbour neighbors if d (X, y) = 2. The
next-nearest-neighbour vertices X and Yy are called prolonged next-nearest-neighbours if

| X|#| y| and is denoted by )X, y{. The next-nearest-neighbour vertices X,y €V that are not
prolonged are called one-level next-nearest-neighbours since | X |=| y | and are denoted by )X, y<.

For each xeG,, let S(x) denote the set of direct successors of X, i.e., if xeW, then
S(x)={yeW,

n+1

:d(x,y)=1}.Foreach xeG,, let S,(x) denote the set of all neighbors of X, i.e.,
SS(X)={yeG,: (x,y)eL}. The set S, (x)\S(x) is a singleton. Let x  denote the (unique)

element of this set.
Let us assume that the spin values belong to the set ® ={0,1,2,...,m}. A function o
xeV — o(x) e @ is called configuration on V . The set of all configurations coincides with the

set Q="
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Consider the quotient group G, /G, ={H,,H,,..., H,}, where G, is a normal subgroup of

index r with r >1.
Definition 1. A configuration o(x), xeV is said to be G;-periodic, if o(x)=0; for all

x e H;. A G,_-periodic configuration is called translation invariant.

The period of a periodic configuration is the index of the corresponding normal subgroup.
The Hamiltonian of the SOS model with competing nearest-neighbour and next-nearest-

neighbour binary interactions has the form:

H(o)=-1, 2 lb(X)—a(y)|-3; D lb(x)-a(y)l,

(X,y)eL RO
X, yev
=3, > lb()—-a(y)| @
A
X, yev

where (J,,J,,J,) e R,
We define the energy of the configuration o, on b by the following formula

U (5, 31,35, 35) Z—%Jl 2 () =a(y)|-3, 2 lo(X)-a(y)]

Xy X, Y
X,yeb X,yeb
-3, (o) -y, (2)
X y(
X,yeb

where (J,,J,,J;) e R,
In [4] we studied ground state for SOS model with competing nearest-neighbour and next-
nearest-neighbour binary interactions on a Cayley tree of order two.
We consider the case k =3.
Let m=2.By (2) for any o, we have U(c,) e{U,,U,,U,,...,U,,}, where
U,=0,U, :—%J1—3J2,U3 =—%J1—J2 -2J,,U,=-J,-2J,-2],,

U, =-J,-6J, U, =-J,-2J,-4J, U, :—ng—&]z, U, :—ng—J2 ~2J,,

U, =-2J,-4J,-4J,U,, =-3J,-6J,, U, =-3J, -2, -4J,,

U,=-2J,-4J,-2J, U, =-2J,-2J,-4J,,U,, = —ng ~5J,-2J,,

U, :—ng—?an -4J,,U :—2\11—5\]2 -23;, U, :—ng—BJ2 -4J,,

7 7
U =-2J3,U =-4J;,Uy :_§J1_3‘]2’ Uy :_EJl_Jz —2J,,

u, =_231—332,u23 =—%J1—J2 —23,,U,, =—3J,-23,-2J,,

Definition 2. A configuration ¢ is called a ground state for the Hamiltonian (1), if
U(e,)=min{U,,U,U,,..U,} for VbeM.
For i =1,24 we put




C, ={o,:U(c,)=U;} and A, ={(J,,J,,J,) eR’| U, = min{U,}}.

1<k<24
Quite cumbersome, but not difficult calculations show that:

1 1. 1
A ={01 9, 30) € R 3, <0,0, <203, < =20, =205}

1
A, ={(3,,3,,3;) e R’ ‘]130;‘]2:_6*]1;‘]33‘]2}’
3 _ 1., 1 1
A ={01,3,.35) e R’ J1S0,JzS—ng,J3=—ZJl—§JZ},
A=A, =A,={(,,3,,3) eR’| J,=0,3,=0,3,=0},

1 1, 1
A ={00,9;,3) € R 3,00, 2 233, <=0+ 205,

1 1 1
A ={(3,,3,,3;) e R°| J,<0;J, S_E‘Jl;Js Z_ZJl_EJz},

A=A, ={,3,3,) R’ J,=0,J,=0J, <0},

1
A=A, ={(,,3,,3;) eR’| J,=0;J,<0;J, :_EJZ},

A ={,,3,,3,) e R’ J,=0,J,>0;J, z%JZ},

1 1 1
A, ={0,,3,,3,) eR’l J,>0;J, ZEJl;J3 SZJlJrEJZ}’

1 1. 1
Ar={(01,3;,3) € R’1 3,200, €23:30: 2 23, =230},

1
As ={(31 32, ) € RT3, =0,9, <03, 2 =2 3.},

1 1
Au ={01 32,35 € Rl 3,20,3, 20,3, =23, + 2 3,

1
As ={(3;, 35, 35) eR’| J, 20;, :E‘]l;JB >J,}

1 1
A, ={03,,3,,3,) e R’ J,<0;J,>0;J, =_ZJ1+EJ2},

1
A; ={(3,,3,,3;) e R°] J,<0;3, =—> 323}

1
A ={(01,32,3,) eR¥ 3, =03, <03, < -2 3},

1 1 1
Ao ={(3,,3,,3,) eR®l J,20;J, < ik <23-2 0k

1
Ay ={(3,,3,,3;) e R%l J,20;J, =233, < .},

1 1 1
A, ={1,,J,,3,) Rl J,>0;J, Sng;Js 2231_532},

24
and | JA =R°.
i=1



Let H, ={xeG, :Za)x(ai)—even}, where Ac{L,2,3,...,k+1} and @, (a;) is the number

ieA
of @ in the word X. If |Al=k+1, then H,=G® ={x G, :| x|-even}, where |X| is length of
the word X.
Note that H , is a normal subgroup of index two (see [2]). Let G, /H, ={H,,G, \H,} be
the quotient group. Denote H;=H,,H, =G, \H,.
Now, we shall study H -periodic ground states. We note that each H -periodic
configuration has the following form:

Jf xeH,,

a(x)={"1 N 3)
o,, if xe H,,

where o, e @, i=12.

Theorem 1. a) Let k=3 and | A|=1. Then for the model (1) the following statements
hold:

i) If (J,,J,,J,) € A then each translation invariant configuration is a ground state.

i) If (J,,J,,J,)€ A N A then each H,-periodic configuration of the form (3) with
o,=0,tlo,,0,c®, isaground state.

iii) If (J,,J,,J;,) e A N A, then each H -periodic configuration of the form (3) with
o0,=0,1t2 0,0, €D, isaground state.

b) Let k=3 and | A]=2. If (J,,J,,J,) € A theneach H -periodic configuration of the
form (3) with o, =0, £2 0,,0, € O, is a ground state.

c)Let k=3 and | Al=3.1f (J,,J,,,) € A, N A, theneach H  -periodic configuration
of the form (3) with o, =0, =2 o,,0, € D, is a ground state.

d) Let k=3 and | A|=4.

i) If (J,,J,,J,)€A, then each G -periodic configuration of the form (3) with
o,=0,tlo,,0,c®, isaground state.

i) If (J,,J,,J,)€A, then each G!”-periodic configuration of the form (3) with
o0,=0,1t2 0,0, €D, isaground state.

Remark 1.
1) Note that applying the methods of [3], one can construct some periodic ground states
which are different from the ground states mentioned in Theorem 1.

2)Let k=3 and A=11=23.If 0,=0,£1 0,,0, €D then the configuration (3)
is not an H  -periodic ground state.
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