ВЕСТНИК ОШСКОГО ГОСУДАРСТВЕННОГО УНИВЕРСИТЕТА МАТЕМАТИКА, ФИЗИКА, ТЕХНИКА. 2023, №2

МАТЕМАТИКА

УДК 517.51, 517.98

https://doi.org/10.52754/16948645 2023 2 180

GROUND STATES FOR THE SOS MODEL WITH COMPETING BINARY INTERACTIONS ON A CAYLEY TREE OF ORDER THREE

Rahmatullaev Muzaffar Muhammadjonovich., DSc, professor,

mrahmatullaev@rambler.ru

Institute of Mathematics named after V.I. Romanovsky

of the Academy of Sciences of the Republic of Uzbekistan,

Tashkent, Uzbekistan

Abraev Bunyod Urinboevich, PhD student

abrayev89@mail.ru

Chirchik state pedagogical university,

Chirchik, Uzbekistan.

Abstract: We consider a SOS (solid-on-solid) model with nearest-neighbor interaction J_1 , prolonged next-nearest-neighbor interaction J_2 and one level next-nearest-neighbor interaction J_3 , where the spin takes values in the set $\Phi = \{0,1,2\}$ on a Cayley tree of order three. In the paper, we study translation-invariant and periodic ground states of the model SOS.

Keywords: Cayley tree, configuration, competing next-nearest-neighbor interactions, translation-invariant and periodic ground state.

ОСНОВНЫЕ СОСТОЯНИЯ ДЛЯ МОДЕЛИ SOS С КОНКУРИРУЮЩИМИ БИНАРНЫМИ ВЗАИМОДЕЙСТВИЯМИ НА ДЕРЕВЕ КЭЛИ ПОРЯДКА ТРИ

Рахматуллаев Музаффар Мухаммаджанович, д.ф.-м.н., профессор,

mrahmatullaev@rambler.ru

Институт Математики имени В.И. Романовского

Академии Наук Республики Узбекистан,

Наманган, Узбекистан

Абраев Бунёд Уринбоевич, PhD докторант,

Чирчикский государственный педагогический университет,

Аннотация: Мы рассматриваем модель SOS (solid-on-solid) с взаимодействием ближайших соседей J_1 , длительным взаимодействием следующих ближайших соседей J_2 и одноуровневым взаимодействием следующих ближайших соседей J_3 , где спин принимает значения в множестве $\Phi = \{0,1,2\}$ на дереве Кэли порядка три. В статье исследуются трансляционно-инвариантные и периодические основные состояния модели SOS.

Ключевые слова: Дерево Кэли, конфигурация, конкурирующие взаимодействия ближайших соседей, трансляционно-инвариантное и периодическое основное состояние.

It is known that a phase diagram of Gibbs measures for a Hamiltonian is close to the phase diagram of isolated (stable) ground states of this Hamiltonian. At low temperatures, a periodic ground state corresponds to a periodic Gibbs measure (see, e.g., [1]). It leads us to investigate the problem of description of periodic and weakly periodic ground states. In this paper, we study periodic ground states for the SOS model with nearest-neighbor and competing binary interactions on a Cayley tree of order three.

Let $\Gamma^k = (V, L)$ be the Cayley tree of order $k \ge 1$, i.e., an infinite tree such that exactly k+1 edges are incident to each vertex. Here V is the set of vertices and L is the set of edges of Γ^k . It is known (see [2]) that there exists a one-to-one correspondence between the set V of vertices of the Cayley tree of order $k \ge 1$ and the group G_k of the free products of k+1 cyclic groups $\{e,a_i\}$, $i=1,\ldots,k+1$ of the second order (i.e. $a_i^2=e$, $a_i^{-1}=a_i$) with generators a_1,a_2,\ldots,a_{k+1} .

For an arbitrary vertex $x^0 \in V$, we put

$$W_n = \{x \in V \mid d(x, x^0) = n\}, V_n = \{x \in V \mid d(x, x^0) \le n\},\$$

where d(x,y) is a natural distance, being the number of nearest-neighbor pairs of the minimal path between the vertices x and y. L_n denotes the set of edges in V_n . The fixed vertex x^0 is called the 0-th level and the vertices in W_n are called the n-th level. For the sake of simplicity, we put $|x| = d(x, x^0)$, $x \in V$.

Two vertices $x, y \in V$ are called the next-nearest-neighbour neighbors if d(x, y) = 2. The next-nearest-neighbour vertices x and y are called prolonged next-nearest-neighbours if $|x| \neq |y|$ and is denoted by $\langle x, y \rangle$. The next-nearest-neighbour vertices $x, y \in V$ that are not prolonged are called one-level next-nearest-neighbours since |x| = |y| and are denoted by $\langle x, y \rangle$.

For each $x \in G_k$, let S(x) denote the set of direct successors of x, i.e., if $x \in W_n$ then $S(x) = \{y \in W_{n+1} : d(x,y) = 1\}$. For each $x \in G_k$, let $S_1(x)$ denote the set of all neighbors of x, i.e., $S_1(x) = \{y \in G_k : \langle x,y \rangle \in L\}$. The set $S_1(x) \setminus S(x)$ is a singleton. Let x_{\downarrow} denote the (unique) element of this set.

Let us assume that the spin values belong to the set $\Phi = \{0,1,2,...,m\}$. A function σ : $x \in V \to \sigma(x) \in \Phi$ is called configuration on V. The set of all configurations coincides with the set $\Omega = \Phi^V$.

Consider the quotient group $G_k / G_k^* = \{H_1, H_2, ..., H_r\}$, where G_k^* is a normal subgroup of index r with $r \ge 1$.

Definition 1. A configuration $\sigma(x)$, $x \in V$ is said to be G_k^* -periodic, if $\sigma(x) = \sigma_i$ for all $x \in H_i$. A G_k -periodic configuration is called translation invariant.

The period of a periodic configuration is the index of the corresponding normal subgroup.

The Hamiltonian of the SOS model with competing nearest-neighbour and next-nearest-neighbour binary interactions has the form:

$$H(\sigma) = -J_1 \sum_{\langle x, y \rangle \in L} |\sigma(x) - \sigma(y)| -J_3 \sum_{\substack{\langle x, y \rangle : \\ x, y \in V}} |\sigma(x) - \sigma(y)|,$$

$$-J_2 \sum_{\substack{\langle x, y \rangle : \\ x \neq V}} |\sigma(x) - \sigma(y)|$$
(1)

where $(J_1, J_2, J_3) \in \mathbb{R}^3$.

We define the energy of the configuration σ_b on b by the following formula

$$U(\sigma_{b}, J_{1}, J_{2}, J_{3}) = -\frac{1}{2} J_{1} \sum_{\substack{\langle x, y \rangle : \\ x, y \in b}} |\sigma(x) - \sigma(y)| -J_{2} \sum_{\substack{\langle x, y \rangle : \\ x, y \in b}} |\sigma(x) - \sigma(y)|$$

$$-J_{3} \sum_{\substack{\langle x, y \rangle : \\ x, y \in b}} (|\sigma(x) - \sigma(y)|),$$

$$(2)$$

where $(J_1, J_2, J_3) \in \mathbb{R}^3$.

In [4] we studied ground state for SOS model with competing nearest-neighbour and next-nearest-neighbour binary interactions on a Cayley tree of order two.

We consider the case k = 3.

Let m=2. By (2) for any σ_b we have $U(\sigma_b) \in \{U_1, U_2, U_3, ..., U_{24}\}$, where

$$\begin{split} U_1 &= 0, U_2 = -\frac{1}{2}J_1 - 3J_2, U_3 = -\frac{1}{2}J_1 - J_2 - 2J_3, U_4 = -J_1 - 2J_2 - 2J_3, \\ U_5 &= -J_1 - 6J_2, U_6 = -J_1 - 2J_2 - 4J_3, U_7 = -\frac{3}{2}J_1 - 3J_2, \ U_8 = -\frac{3}{2}J_1 - J_2 - 2J_3, \\ U_9 &= -2J_1 - 4J_2 - 4J_3, U_{10} = -3J_1 - 6J_2, U_{11} = -3J_1 - 2J_2 - 4J_3, \\ U_{12} &= -2J_1 - 4J_2 - 2J_3, U_{13} = -2J_1 - 2J_2 - 4J_3, U_{14} = -\frac{5}{2}J_1 - 5J_2 - 2J_3, \\ U_{15} &= -\frac{5}{2}J_1 - 3J_2 - 4J_3, U_{16} = -\frac{3}{2}J_1 - 5J_2 - 2J_3, \ U_{17} = -\frac{3}{2}J_1 - 3J_2 - 4J_3, \\ U_{18} &= -2J_1, U_{19} = -4J_1, U_{20} = -\frac{7}{2}J_1 - 3J_2, U_{21} = -\frac{7}{2}J_1 - J_2 - 2J_3, \\ U_{22} &= -\frac{5}{2}J_1 - 3J_2, U_{23} = -\frac{5}{2}J_1 - J_2 - 2J_3, U_{24} = -3J_1 - 2J_2 - 2J_3. \end{split}$$

Definition 2. A configuration φ is called a ground state for the Hamiltonian (1), if $U(\varphi_b) = \min\{U_1, U_2, U_3, ..., U_{24}\}$ for $\forall b \in M$.

For $i = \overline{1,24}$ we put

$$C_i = \{\sigma_b : U(\sigma_b) = U_i\} \text{ and } A_m = \{(J_1, J_2, J_3) \in \mathbb{R}^3 | U_m = \min_{1 \le k \le 2d} \{U_k\}\}.$$

Quite cumbersome, but not difficult calculations show that:

$$\begin{split} A_1 &= \{(J_1, J_2, J_3) \in \mathbb{R}^3 | \ J_1 \leq 0; J_2 \leq -\frac{1}{6}J_1; J_3 \leq -\frac{1}{4}J_1 - \frac{1}{2}J_2\}, \\ A_2 &= \{(J_1, J_2, J_3) \in \mathbb{R}^3 | \ J_1 \leq 0; J_2 = -\frac{1}{6}J_1; J_3 \leq J_2\}, \\ A_3 &= \{(J_1, J_2, J_3) \in \mathbb{R}^3 | \ J_1 \leq 0; J_2 \leq -\frac{1}{6}J_1; J_3 = -\frac{1}{4}J_1 - \frac{1}{2}J_2\}, \\ A_4 &= A_{12} = A_{24} = \{(J_1, J_2, J_3) \in \mathbb{R}^3 | \ J_1 \leq 0; J_2 \geq -\frac{1}{6}J_1; J_3 \leq -\frac{1}{4}J_1 + \frac{1}{2}J_2\}, \\ A_5 &= \{(J_1, J_2, J_3) \in \mathbb{R}^3 | \ J_1 \leq 0; J_2 \geq -\frac{1}{6}J_1; J_3 \leq -\frac{1}{4}J_1 + \frac{1}{2}J_2\}, \\ A_6 &= \{(J_1, J_2, J_3) \in \mathbb{R}^3 | \ J_1 \leq 0; J_2 \leq -\frac{1}{2}J_1; J_3 \geq -\frac{1}{4}J_1 - \frac{1}{2}J_2\}, \\ A_7 &= A_{22} = \{(J_1, J_2, J_3) \in \mathbb{R}^3 | \ J_1 = 0; J_2 \leq 0; J_3 \leq 0\}, \\ A_8 &= A_{23} = \{(J_1, J_2, J_3) \in \mathbb{R}^3 | \ J_1 = 0; J_2 \leq 0; J_3 \geq \frac{1}{2}J_2\}, \\ A_9 &= \{(J_1, J_2, J_3) \in \mathbb{R}^3 | \ J_1 = 0; J_2 \geq 0; J_3 \geq \frac{1}{2}J_2\}, \\ A_{10} &= \{(J_1, J_2, J_3) \in \mathbb{R}^3 | \ J_1 \geq 0; J_2 \geq \frac{1}{6}J_1; J_3 \leq \frac{1}{4}J_1 + \frac{1}{2}J_2\}, \\ A_{11} &= \{(J_1, J_2, J_3) \in \mathbb{R}^3 | \ J_1 \geq 0; J_2 \leq \frac{1}{2}J_1; J_3 \geq \frac{1}{4}J_1 + \frac{1}{2}J_2\}, \\ A_{14} &= \{(J_1, J_2, J_3) \in \mathbb{R}^3 | \ J_1 \geq 0; J_2 \geq 0; J_3 = \frac{1}{4}J_1 + \frac{1}{2}J_2\}, \\ A_{15} &= \{(J_1, J_2, J_3) \in \mathbb{R}^3 | \ J_1 \geq 0; J_2 \geq 0; J_3 = -\frac{1}{4}J_1 + \frac{1}{2}J_2\}, \\ A_{16} &= \{(J_1, J_2, J_3) \in \mathbb{R}^3 | \ J_1 \leq 0; J_2 \geq 0; J_3 = -\frac{1}{4}J_1 + \frac{1}{2}J_2\}, \\ A_{17} &= \{(J_1, J_2, J_3) \in \mathbb{R}^3 | \ J_1 \leq 0; J_2 \geq 0; J_3 = -\frac{1}{4}J_1 + \frac{1}{2}J_2\}, \\ A_{18} &= \{(J_1, J_2, J_3) \in \mathbb{R}^3 | \ J_1 \leq 0; J_2 \leq 0; J_3 \leq -\frac{1}{2}J_1; J_3 \geq J_2\}, \\ A_{19} &= \{(J_1, J_2, J_3) \in \mathbb{R}^3 | \ J_1 \geq 0; J_2 \leq \frac{1}{6}J_1; J_3 \leq \frac{1}{4}J_1 - \frac{1}{2}J_2\}, \\ A_{20} &= \{(J_1, J_2, J_3) \in \mathbb{R}^3 | \ J_1 \geq 0; J_2 \leq \frac{1}{6}J_1; J_3 \leq \frac{1}{4}J_1 - \frac{1}{2}J_2\}, \\ A_{21} &= \{(J_1, J_2, J_3) \in \mathbb{R}^3 | \ J_1 \geq 0; J_2 \leq \frac{1}{6}J_1; J_3 \leq \frac{1}{4}J_1 - \frac{1}{2}J_2\}, \\ A_{21} &= \{(J_1, J_2, J_3) \in \mathbb{R}^3 | \ J_1 \geq 0; J_2 \leq \frac{1}{6}J_1; J_3 \leq \frac{1}{4}J_1 - \frac{1}{2}J_2\}, \\ A_{21} &= \{(J_1, J_2, J_3) \in \mathbb{R}^3 | \ J_1 \geq 0; J_2 \leq \frac{1}{6}J_1; J_3 \leq \frac{1}{4}J_1 - \frac{1}{2}J_2\}, \\ A_{21} &= \{(J_1, J_2, J_3) \in \mathbb{R}^3 | \$$

and $\bigcup_{i=1}^{24} A_i = \mathbb{R}^3$.

Let $H_A = \{x \in G_k : \sum_{i \in A} \omega_x(a_i) - \text{even}\}$, where $A \subset \{1, 2, 3, ..., k+1\}$ and $\omega_x(a_i)$ is the number of a_i in the word x. If |A| = k+1, then $H_A \equiv G_k^{(2)} = \{x \in G_k : |x| - \text{even}\}$, where |x| is length of the word x.

Note that H_A is a normal subgroup of index two (see [2]). Let $G_k / H_A = \{H_A, G_k \setminus H_A\}$ be the quotient group. Denote $H_0 = H_A, H_1 = G_k \setminus H_A$.

Now, we shall study H_0 -periodic ground states. We note that each H_0 -periodic configuration has the following form:

$$\sigma(x) = \begin{cases} \sigma_1, & \text{if } x \in H_0, \\ \sigma_2, & \text{if } x \in H_1, \end{cases}$$
 (3)

where $\sigma_i \in \Phi$, i = 1, 2.

Theorem 1. a) Let k=3 and |A|=1. Then for the model (1) the following statements hold:

- i) If $(J_1, J_2, J_3) \in A_1$ then each translation invariant configuration is a ground state.
- ii) If $(J_1, J_2, J_3) \in A_2 \cap A_3$ then each H_0 -periodic configuration of the form (3) with $\sigma_1 = \sigma_2 \pm 1 \ \sigma_1, \sigma_2 \in \Phi$, is a ground state.
- iii) If $(J_1, J_2, J_3) \in A_5 \cap A_6$ then each H_0 -periodic configuration of the form (3) with $\sigma_1 = \sigma_2 \pm 2 \ \sigma_1, \sigma_2 \in \Phi$, is a ground state.
- b) Let k=3 and |A|=2. If $(J_1,J_2,J_3)\in A_9$ then each H_0 -periodic configuration of the form (3) with $\sigma_1=\sigma_2\pm 2$ $\sigma_1,\sigma_2\in \Phi$, is a ground state.
- c) Let k=3 and |A|=3. If $(J_1,J_2,J_3)\in A_{10}\cap A_{11}$ then each H_0 -periodic configuration of the form (3) with $\sigma_1=\sigma_2\pm 2\ \sigma_1,\sigma_2\in \Phi$, is a ground state.
 - d) Let k = 3 and |A| = 4.
- i) If $(J_1,J_2,J_3)\in A_{18}$ then each $G_k^{(2)}$ -periodic configuration of the form (3) with $\sigma_1=\sigma_2\pm 1\ \sigma_1,\sigma_2\in \Phi$, is a ground state.
- ii) If $(J_1,J_2,J_3)\in A_{19}$ then each $G_k^{(2)}$ -periodic configuration of the form (3) with $\sigma_1=\sigma_2\pm 2\ \sigma_1,\sigma_2\in \Phi$, is a ground state.

Remark 1.

- 1) Note that applying the methods of [3], one can construct some periodic ground states which are different from the ground states mentioned in Theorem 1.
- 2) Let k=3 and $A_1=l, l=2,3$. If $\sigma_1=\sigma_2\pm 1, \sigma_1, \sigma_2\in \Phi$ then the configuration (3) is not an H_0 -periodic ground state.

REFERENCE

- 1. Sinai Ya. G., Theory of phase transitions: rigorous results, / Ya. G. Sinai Science, M. 1980.
- 2. Rozikov U.A., Gibbs measures on Cayley trees, / U.A. Rozikov World Scientific, Singapore, 2013.
- 3. Rahmatullaev M.M., Abraev B.U., On ground states for the SOS model with competing interactions / M.M.Rahmatullaev, B.U. Abraev // Journal of Siberian Federal University, 2022,

Vol 15. No.2 pp. 1-14.

4. Abraev B.U. Ground states for the SOS model with competing binary interactions on a Cayley tree / Abraev B.U. // Uzbek Mathematical Journal 2022, Volume 66, Issue 3, pp.10-20.