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Abstract: In the paper, we study pursuit and evasion differential games within a four-dimensional cube, where 

all the players move along the edges. The problem is to find the optimal number of pursuers in the game, to construct 

strategies for the pursuers in pursuit game, and evasion strategy in evasion game.  
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Аннотация: В статье изучаются дифференциальные игры преследования и уклонения внутри 

четырехмерного куба т.е. тессеракта, где все игроки перемещаются по ребрам. Задача состоит в том, 

чтобы найти оптимальное количество преследователей в игре, построить стратегии преследователей в 

игре преследования и стратегию уклонения в игре уклонения. 
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1. Introduction 

The notion of differential game was introduced by Isaacs [1]. Pontryagin [2] and Krasovskii 

[3] gave fundamental contribution to the theory of differential games creating the formalizations 

to the theory. The theory was further developed by many researchers such as Azamov [4], 

Berkovitz [5], Elliott and Kalton [6], Fleming [7], Friedman [8], Hajek [9], Mishchenko [10], 

Petrosyan [11], Satimov [12] and others. 

One of the most significant current discussions in differential games is multi player 

differential games. In the last three decades of the past century there had seen the rapid 

https://doi.org/10.52754/16948645_2023_2_169
mailto:ibragimov.math@gmail.com
mailto:ibragimov.math@gmail.com


development of differential games of many players such as [13, 14]. 

In recent years, there has been an increasing interest in differential games of several players 

(see for example [15, 16, 17, 18, 19, 20, 21, 22]) 

However, if exhaustable resources such as energy, fuel, resources etc. are restricted for the 

modeling control processes, then control functions are restricted by integral constraints. The 

method of resolving functions for the games with integral constraints was developed by Belousov 

[23], to obtain a sufficient condition in solving a pursuit differential game. The solution was then 

extended to the case of convex integral constraints [24]. Other works in differential game in 
n

 

of integral constraints include [19, 20, 21, 25]. 

Some games with either geometric or integral constraint, restrict the movement of players to 

some specific state constraints. For examples, differential games in a convex subset of 
n

 were 

studied by [26, 27, 28, 29] and [30]. Furthermore, differential games within a geometrical structure 

in the form of abstract graphs as its state constraint, are of increasing interest. 

These types of games have minimax forms of which, each being a model for the search 

problem of a moving object, as mentioned in [31, 32]. It could be called multi-move games as in 

the work of [33, 34]. In this type of games, players move from one vertex to its adjacent vertex by 

jumping constitute one type. Another type of game on abstract graphs is where players move along 

the edges of a given graph embedded in a Euclidean space, as studied in [16, 32, 35, 36, 37, 38]. 

One of the most recent work involved a study in a differential game of many pursuers and 

one evader within 1-skeleton graph of an orthoplex of dimension 1d + , as discussed in [39]. Both 

pursuit and evasion games were considered on the edge graph 1dK +  of the orthoplex 2( 1)d+  in the 

Euclidean space 1d+ . It was shown that pursuit can be completed in the case of = = 1n k d + , 

or when n k  and 2n k d+  . Otherwise, it was proven that evasion is possible. 

 

 

Figure 1: The graph of four dimensional cube K . 

The current paper intends to study both pursuit and evasion differential games within a four-

dimensional cube. All the players move along the edges of the cube and the search for the optimal 

number of pursuers to ensure pursuit can be completed, are also done. 

2. Statement of problem 

We consider a differential game of n  pursuers 
1x , 

2x ,..., 
nx , 2n  , and one evader y  

whose dynamics are given by the following equations  



 
0

0

= , (0) = , =1,..., ,

= , (0) = ,

i i i ix u x x i n

y v y y
 (1) 

where 0 0,ix y K , 0 0ix y , = 1,...,i n ; 
iu  is the control parameter of i -th pursuer, and v  is 

the control parameter of the evader. All the players move along the edges of four-dimensional cube 

K . The maximal speeds of the pursuers 
1x , 

2x ,..., 
nx  are 

1 , 
2 ,..., 

n , respectively, and that 

of evader y  is 1, i.e., | |i iu  , = 1,...,i n , | | 1v  . It is assumed that 1/ 3 < 1i . 

We let ( )B r  denote the ball of radius r  and centered at the origin of the Euclidean space 

1d+
.  

Definition 1. A measurable function ( )iu  , :[0, ) ( )i iu B  →  is called admissible control 

of the i -th pursuer, {1,..., }i n , if for the solution ( )ix   of the equation  

 0= , (0) = ,i i i ix u x x  

we have ( )ix t K , 0t  .  

Definition 2. A measurable function ( )v  , :[0, ) ( )v B  →  is called admissible control of 

the evader, if for the solution ( )y   of the equation  

 0= , (0) = ,y v y y  

we have ( )y t K , 0t  .  

We consider pursuit and evasion differential games. In the pursuit differential game pursuers 

apply some strategies and evader uses an arbitrary admissible control. Let us define strategies of 

pursuers. 

Definition 3. The functions 1 1( , ,..., , , ) ( , ,..., , , )n i nt x x y v U t x x y v→ , =1,2,...,i n , are called 

strategies of pursuers 
ix , =1,2,...,i n , if the initial value problem (1) has a unique solution 

1( ),..., ( )nx t x t , ( )y t K , 0t  , for 1= ( , ,..., , , )i i nu U t x x y v , = 1,2,...,i n , and for any admissible 

control = ( )v v t  of the evader.  

Definition 4. If, for some number > 0T , there exist strategies of pursuers such that 

( ) = ( )ix y   at some  , 0 < T   and {1,..., }i n , then pursuit is said to be completed. The 

pursuers are interested in completing the pursuit as earlier as possible.  

Definition 5. A function 1 1( , ,..., , ) ( , ,..., , )n nt x x y V t x x y→  is called a strategy of the evader 

y  if the initial value problem (1) has a unique solution 1( ),..., ( )nx t x t , ( )y t K , 0t  , for 

1= ( , ,..., , )nv V t x x y  and for any admissible controls of pursuers = ( )i iu u t , = 1,2,...,i n .  

Definition 6. If, for some initial states of players 10 0 0,..., ,nx x y K , there exists a strategy 

of evader such that ( ) ( )ix t y t  for all 0t  , and = 1,2,...,i n , then we say that evasion is possible 

in the game in K . 

The evader is interested in maintaining the inequality ( ) ( )ix t y t  as long as possible. Since 

for some initial states the evader may be trapped by pursuers and pursuit can be completed by 

pursuers easily, therefore this definition contains the phrase "for some initial states of players 

10 0 0,..., ,nx x y K ". 

The number = ( )N N K  is called the optimal number of pursuers for the game on the cube 

K  if, for any initial states of players, pursuit can be completed in the game with N  pursuers and 



evasion is possible in the game with 1N −  pursuers. 

The problem is to find the optimal number of pursuers N  in the game, to construct strategies 

for the pursuers in pursuit game, and evasion strategy in evasion game. 

3. Main Result 

Without any loss of generality we assume that the lengths of edges of the cube K  is equal to 1. 

3.1 Pursuit differential game. In this subsection, we prove the following statement.  

Theorem 1. Four pursuers 1 2 3 4, , ,x x x x  can complete the pursuit in the differential game on 

1-skeleton of the four dimensional cube K .  

Proof.  

 

Figure 2: The shadow E  of the point 
1E AA : = 3AE AE . 

Let the points D  and C  divide the edge AB  into three equal segments: = =AD D C C B     

(Figure 2). To construct strategies of pursuers, we define the shadow E AB  of the evader 

E AB  on the edge AB  as follows. 

 

Figure 3: The shadow E  of the point E : 
1 = 3D E D E  . 

1. If E AE  or AD  or 1AA  (these edges are highlighted in green in Figure 2), then 

= 3AE AE .  



2. If E BC  or BF  or 1BB  (these edges are highlighted in green), then = 3BE BE .  

3. If E HE  or HD  or 1HH  or 1DD  or 1EE  or 1 1A D  or 1 1D H  or 1 1H E  or 1 1A E  (these edges 

are highlighted in blue), then =E D  .  

4. If E GF  or GC  or 1GG  or 1FF  or 1CC  or 1 1B C  or 1 1C G  or 1 1G F  or 1 1F B  (these edges 

are highlighted in blue), then =E C  .  

5. If E  is on the edge parallel to AB , that is, E EF  or HG  or DC  or 1 1A B  or 1 1E F  or 

1 1H G  or 1 1D C  (these edges are highlighted in gold), then E C D    is defined from the condition 

that the distance of E  from the left end point of the edge that contains E  is equal to 3D E   (Figure 

3). 

Since the maximum speed of the evader is 1, the speed of the point E  doesn’t exceed 1/3. 

If the pursuer 1P  moves from the vertex A  to the vertex B  along the edge AB , then 1P  coincides 

with either the real evader E  or its shadow E . If 1P  coincides with the real evader E , then pursuit 

is completed. If 1P  coincides with the shadow of evader E , then 1P  can further move on the point 

E  holding this point. Then, as the evader E  reaches one of the vertices A  and B  at some time, 

we have 
1 = =P E E  at that time, that is, the evader is captured at that time. Thus, starting from 

the time when 1 =P E  pursuer 1P  can guard the edge AB  from the evader. 

 
Figure 4: The edges controlled by the pursuers of the 4D cube 

We construct now strategies for the pursuers. Let pursuers 
1x , 

2x , 
3x , and 

4x  come to the 

vertices A , H , 
1E , and 

1D , respectively. Next, the pursuers 
1x , 

2x , 
3x , and 

4x  move along the 

edges AB , HG , 
1 1E F , and 

1 1DC , respectively, and catch the shadows of the evader on these 

edges, respectively. Each pursuer starting from the time when he catches the shadow of the evader 

moves holding the shadow of the evader on that edge. 

Let all the pursuers 
1x , 

2x , 
3x , 

4x  catch the shadows of the evader on the edges AB , HG

, 
1 1E F , 

1 1DC , respectively, by the time T  (Figure 4). 

Then at the time T  the evader is on one of the edges colored in Green or Blue or Cyan or 

Magenta (Figure 4). In each case, the evader is trapped by three pursuers and cannot walk from 

one edge to another edge of distinct colors. 

Without any loss of generality, we assume that the evader is on a green edge. Then it is 



trapped by the pursuers 
1x , 

3x , 
4x . Then, we let the pursuers 

1x , 
3x , 

4x  control the edges AB , 

1 1E F , 
1 1DC , respectively, holding the evader’s shadow and let the pursuer 

2x  move towards the 

evader. Since the green edges form a tree, therefore the pursuer 
2x  catches the evader or forces it 

to reach one of the edges AB , 
1 1E F , 

1 1DC . In the latter case, the evader will be caught by one of 

the pursuers 
1x , 

3x , 
4x . The proof of the theorem is complete.  

3.2 Evasion differential game. We prove now the following evasion possible statement.  

Theorem 2. Evasion from three pursuers 
1x , 

2x , 
3x  is possible in the differential game on 

1-skeleton of the four dimensional cube K .  

Proof. To prove this theorem, we show that, for some initial states of players, there exist a 

strategy of the evader such that evasion is possible.  

 

Figure 5: The shadow E  of the point E : 
1 = 3D E D E  . 

Let the evader is at some vertex of the cube say at the vertex A  and any pursuer is not at the 

vertex A . We show that from such initial positions of players evasion is possible. We construct a 

strategy for the evader as follows. The evader stays at the point A  until the distance between the 

point A  and closest to this point pursuer becomes less than or equal to 1/3 at some time 1t . Note 

that it is possible that 1 = 0t . For example, if the distance of a pursuer from the point A  is less 

than or equal to 1/3 at the initial time, then, clearly, 1 = 0t . 

For the definiteness, we assume that the neighboring to A  vertices of the cube are B , C , 

D , E , and 1 =1/ 3AP  at some time 1 0t   and that the pursuer 1P  is on the edge AB  (Figure 5). 

Since the distance between any two of the points C , D , E  along the 1-skeleton of the cube is 

greater or equal to 2, and the speeds of pursuers 2P  and 3P  are less than or equal to 1, therefore 

these pursuers can reach only one of the vertices C , D , E  for the unit time. Clearly, the pursuer 

1P  cannot reach these vertices for the unit time. Hence, the evader can reach one of these vertices, 

say the vertex C  for the unit time not being captured by the pursuers. Thus, the evader is at the 

vertex C  at the time 1 1t + . We repeatedly use this reasoning, to conclude that evasion is possible 

on the infinite time interval [0, ) . The proof of the theorem is complete. 



4. Conclusion 

We have studied pursuit and evasion differential games on the edge graph of four 

dimensional cube. We have established that in the differential game of four pursuers and one 

evader pursuit can be completed. Here, one of the central results of the paper is the construction 

of strategies for the pursuers. Next, we proved that in the differential game of three pursuers and 

one evader evasion is possible. Also, we have proposed a strategy for the evader that ensures 

evasion in the differential game. 

Based on the two theorems proved for the pursuit and evasion differential games we can 

conclude that the optimal number of pursuers N  in the game is = 4N . 
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