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Abstract. In this paper we provide a detailed analysis of the density-type properties of the
space of solutions of an ordinary differential equation. We show that the density, local density,
weak density, and local weak density of the space of solutions of an ordinary differential equation
are countable. Furthermore, we prove that these properties are preserved under functors of
hyperspace and superextensions of the space of solutions of an ordinary differential equation.
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Introduction and Preliminaries

The theory of ordinary differential equations is the most interesting section of mathematical

science for research and application (see, for example, [1]–[6]). The study of cardinal properties

of the solution space of differential equations is relevant.
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There are a lot of publications of studying on density-type properties of topological spaces,

are appeared [7]–[11]. The interest in the study of cardinal invariants of topological spaces is

high among mathematicians [12]–[14].

Cardinal function theory constitutes a strong area within the mathematical sciences, offering

a wide range of practical applications. Many real-world problems can be reduced to finding a

cardinal function, along with the topological invariants. A wide range of analytical and numerical

methods has been developed to solve such problems effectively across disciplines in science and

engineering (see, [15], [16]).

In this paper, problems of the theory of cardinal invariants of the space of solutions of an

ordinary differential equation under functor’s hyperspaces and superextensions are considered.

A set A ⊂ X is dense in X if A = X. The density is defined as the smallest cardinal number

of the form |A|, where A is a dense subset of X. This cardinal number is denoted by d(X). If

d(X) ≤ ℵ0, then we say that the space X is separable [16].

We say that the local density of a topological space X is τ at a point x, if τ is the smallest

cardinal number such that x has a neighborhood of density τ in X. The local density at a point

x is denoted by ld(x). The local density of a topological space X is defined as the supremum

of all numbers ld(x) for x ∈ X: ld(X) = sup
{
ld(x) : x ∈ X

}
[7, 8]. It is known that, for any

topological space we have ld(X) ≤ d(X).

We say that the weak density of the topological space is τ ≥ ℵ0, if τ is the smallest cardinal

number such that there exists a π-base coinciding with τ of centered systems of open sets, i.e.

there is a π-base B = ∪
{
Bα : α ∈ A

}
, where Bα is a centered system of open sets α ∈ A, such

that |A| = τ . Weak density of topological space X is denoted by wd(X) [7].

Topological space X is said local weak τ -dense at a point x, if τ is the smallest cardinal

number such that x has a neighborhood of weak density τ in X. Local weak density at a point

x is denoted by lwd(x). The local weak density of a topological space X is defined as the

supremum of all numbers lwd(x) for x ∈ X : lwd(X) = sup
{
lwd(x) : x ∈ X

}
[7], [8].

Let X be a T1-space. The collection of all nonempty closed subsets of X we denote by expX.

The family B of all sets in the form

O 〈U1, . . . , Un〉 =
{
F : F ∈ expX, F ⊂

n
∪
i=1

Ui, F ∩ Ui 6= ∅, i = 1, 2, ..., n

}
, where U1, . . . , Un

is a sequence of open sets of X, generates the topology on the set expX. This topology is

called the Vietoris topology. The expX with the Vietoris topology is called the exponen-

tial space or the hyperspace of X [15]. Let X be a T1-space. Denote by expnX the set

of all closed subsets of X cardinality of that is not greater than the cardinal number n, i.e.

expnX =
{
F ∈ expX : |F | ≤ n

}
.

Let’s put expωX = ∪
{
expnX : n = 1, 2, ...

}
, expcX =

{
F ∈ expX : F is compact in X

}
.

It is clear, that expnX ⊂ expωX ⊂ expcX ⊂ expX for any topological space X.

A system ξ =
{
Fα : α ∈ A

}
of closed subsets of a spaceX is called linked, if any two elements

of ξ intersect. Any linked system can be upgraded to a maximum linked system (MLS). But

such upgrade, as a rule, is not one valued. A linked system of space is MLS, if and only if

it possesses the following completeness property [15]: ”If a closed set A ⊂ X intersects with

every element of ξ, then A ∈ ξ”. We denote λX as the set of all MLS of the space X. For the

closed set A ⊂ X we consider A+ =
{
ξ ∈ λX : A ∈ ξ

}
. For the open set U ⊂ X we consider

O(U) =
{
ξ ∈ λX : there exists F ∈ ξ such that F ⊂ U

}
.

The family of sets of the form O(U) covers the set λX (O(X) = λX). So, it forms an open
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prebase of the topology on λX. The set λX, equipped with this topology, is called as the

superextension of the space X [5]. Let X be topological space and λX be its superextension.

MLS ξ ∈ λX is called compact, if it contains at least one compact element, and is denoted

by CMLS. The space λcX =
{
ξ ∈ λX : ξ is CMLS

}
we call as compact super kernel (or

compact superextension) of the topological space X. It is clear that λcX ⊂ λX. We see that

λ∗X ⊆ λcX ⊆ λX for topological T1-space X. If the space X is compact, then we have the

equality λcX = λX. If the space X is discrete, then we have another equality λ∗X = λcX. The

basement of the CMLS ξ in X is the family F(ξ) =
{
F ∈ ξ : F is a compact

}
.

Let us have a differential equation y′(t) = f
(
t, y(t)

)
, where the function f is continuous in

a domain U . We call a function z ∈ Cs(U) a solution of this differential equation, if a) its

domain consists of one point or b) the function z is defined on a certain interval [a, b], where

at each point t of this interval the derivative z′ exists and is equal to f
(
t, z(t)

)
. Of course,

assigning a function to solutions in accordance with a) is a certain artificial device. However we

can’t do without it, since otherwise at each step of our construction we would have to make the

appropriate reservations. Let Z be the set of all solutions of our differential equation defined

in this way. What properties of this set are used when discussing the topological properties of

solutions of the equation? Let us list the main ones.

1. If the function z belongs to the set Z and the segment I lies in the domain of definition

of the function z, then z|I ∈ Z.

2. If the intersection I of the domains of definition of functions z, z1, z2 ∈ Z is nonempty

and z1|I = z2|I , then a function defined on a segment π(z1) ∩ π(z2):

z(t) =

{
z1(t), at t ∈ π (z1) ,

z2(t), at t ∈ π (z2)

also belongs to the set Z.

3. The set Z contains all functions belonging to Cs(U), the domain of the definitions of

which are one-point, and if the function z ∈ Cs(U) given on a certain segment [a, b], where

a < b, satisfies the condition: for any segment I lying in the interval (a, b), z|I ∈ Z, then

z ∈ Z. The solution set Z satisfies Conditions 1 and 2 and the first part of Condition 3 follows

immediately from our definition of a solution. Satisfaction of the second part of Condition 3

can be proven. For example, we use Lagrange’s formula, which is well-known from introductory

mathematical analysis. We now turn to those properties of the solution set that form the content

of the first fundamental theorems of the theory of ordinary differential equations.

4. For any point (t, y) in the domain U , there exists a function z, belonging to the set Z,

defining on some interval. The interval contains the point t within itself, and taking the value y

at the point t. This property easily aligns with the property involved in the solution existence

theorem.

5. For any compact subset K of U , the set ZK is compact. Here and below, for M ⊂ U

and Z ⊂ Cs(U) we denote ZM =
{
z : z ∈ Z, Gr(z) ⊂ M

}
. Compactness implies the existence

of limit points for infinite sets. However, from the elements of an infinite set, one can select a

sequence (of pairwise distinct elements), and, therefore, compactness is equivalent (in the case

of a metric space) to the ability to select a convergent subsequence from an arbitrary sequence

of points. This property of solution sequences (under appropriate additional assumptions) is

constantly used in the theory of ordinary differential equations. Condition 5, which we have

presented, is advantageous in that, when formulated concisely, it has a zone of immediate validity
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significantly broader than ordinary conditions of this type.

6. If the domains of definition of the functions z1, z2 ∈ Z coincide and at some point t of

their common domain of definition z1(t) = z2(t), then z1 = z2 (i.e., the functions coincide over

the entire domain of definition). Here it is easy to recognize the property that appears in the

uniqueness theorem.

7. For any point (t, y) of the domain U there is a number δ > 0 such that for any point

s ∈ (t− δ, t+ δ) the set
{
z(s) : z ∈ Z, s, t ∈ π(z), z(t) = y(t)

}
is connected.

For some undefined or related concepts, we refer the reader to [2] and [15]–[22].

1 Main results

Let I = [a, b] ⊂ R be compact and consider the ordinary differential equation

x′(t) = f(t, x(t)), t ∈ I, (1.1)

where f : I × Rn → Rn is continuous and locally Lipschitz with respect to x.

Fix t0 ∈ I. For each x0 ∈ Rn, the initial value problem

x′(t) = f(t, x(t)), x(t0) = x0

admits a unique solution x(·, x0) ∈ C(I,Rn).

Define

S = {x(·, x0) : x0 ∈ Rn} ⊂ C(I,Rn),

endowed with the subspace topology induced by the supremum norm.

Lemma 1.1. The map

Φ : Rn → C(I,Rn), Φ(x0) = x(·, x0),

is continuous.

Proof. Let x0, y0 ∈ Rn and denote u(t) = x(t, x0), v(t) = x(t, y0). Then

‖u(t)− v(t)‖ ≤ ‖x0 − y0‖+
t∫

t0

L‖u(s)− v(s)‖ ds,

where 0 < L = const is a Lipschitz constant of f on a suitable compact set. By Grönwall’s

inequality, we obtain

‖u(t)− v(t)‖ ≤ ‖x0 − y0‖eL|t−t0|.

Taking supremum over t ∈ I yields

‖Φ(x0)− Φ(y0)‖∞ ≤ C‖x0 − y0‖.

Hence follows that Φ is continuous.

Lemma 1.2. The mapping Φ is injective.

Proof. If Φ(x0) = Φ(y0), then x(t0, x0) = x(t0, y0). Hence, we get x0 = y0 by uniqueness of

solutions.
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Corollary 1.1. S is homeomorphic to Φ(Rn).

Lemma 1.3. Rn has countable density.

Proof. The set Qn is countable and dense in Rn.

Theorem 1.1.

d(S ) = ld(S ) = ℵ0.

Proof. By continuity of Φ, the image of a dense set is dense in the image. Thus Φ(Qn) is

dense in S , so d(S ) ≤ ℵ0. Since S is infinite, its density cannot be finite.

As S is metrizable, local density coincides with density at every point. Hence ld(S ) =

ℵ0.

Theorem 1.2.

wd(S ) = lwd(S ) = ℵ0.

Proof. In metrizable spaces, the weak topology generated by continuous real-valued func-

tions coincides with the original topology. Therefore weak closure equals ordinary closure. Thus,

weak density equals density, and the same holds locally.

Theorem 1.3. If S is a space of solutions of an ordinary differential equation, then

d(expc(S )) = d(S ).

Proof. Assume that d(S ) = κ. Let D ⊂ S be a dense subset with |D| = κ. Consider the

family

D = {K ⊂ D : K is nonempty and finite}.

Since D is dense in S , every nonempty open set in expc(S ) contains some finite subset of

D. Consequently, D is dense in expc(S ). Moreover, we have |D | = κ. Hence, we obtain

d(expc(S )) ≤ κ.

Conversely, since S embeds homeomorphically into expc(S ) via x 7→ {x}, we have d(S ) ≤
d(expc(S )). Therefore d(expc(S )) = d(S ).

Corollary 1.2. For the solution space S ,

d(expc(S )) = ℵ0.

Theorem 1.4. If S is a space of solutions of an ordinary differential equation, then

ld(expc(S )) = ld(S ).

Proof. Let K ∈ expc(S ). Every basic neighborhood of K in the Vietoris topology is

determined by finitely many open neighborhoods in S . Since S is metrizable, each such

neighborhood has density at most ld(S ). Finite products and finite unions preserve local

density bounds. Hence

ld(K, expc(S )) ≤ ld(S ).

Conversely, for any x ∈ S , the embedding x 7→ {x} preserves neighborhoods. Thus ld(S ) ≤
ld(expc(S )).
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Corollary 1.3.

ld(expc(S )) = ℵ0.

Theorem 1.5. If X is metrizable, then

wd(expc(X)) = d(expc(X)), lwd(expc(X)) = ld(expc(X)).

Proof. In metrizable spaces, the weak topology generated by continuous real-valued func-

tions coincides with the original topology. Since expc(X) is metrizable whenever X is, weak

closure equals ordinary closure. Thus, weak density and local weak density coincide with their

classical counterparts.

Corollary 1.4.

wd(expc(S )) = lwd(expc(S )) = ℵ0.

Theorem 1.6. If X is separable metrizable, then

d(λX) = d(X).

Proof. The superextension λX is a continuous image of expc(expc(X)). By Theorem 1.3,

d(expc(expc(X))) = d(X).

Since density does not increase under continuous images, we obtain d(λX) ≤ d(X). The natural

embedding of X into λX implies the reverse inequality.

Theorem 1.7. If X is metrizable, then

ld(λX) = ld(X).

Proof. Let ξ ∈ λX. Neighborhoods of ξ are determined by finitely many open sets in X.

Using metrizability, each such neighborhood contains a dense subset of size at most ld(X). Thus

ld(λX) ≤ ld(X). The canonical embedding of X into λX yields the opposite inequality.

Theorem 1.8. If X is metrizable, then

wd(λX) = lwd(λX) = d(X).

Proof. Since λX is metrizable whenever X is, weak and ordinary topologies coincide. Thus

weak density invariants reduce to classical density invariants, which are preserved by Theorems

1.6 and 1.7.

Corollary 1.5. For the solution space S ,

d(λS ) = ld(λS ) = wd(λS ) = lwd(λS ) = ℵ0.
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Conclusion

We study density-type properties of the space of solutions of ordinary differential equations

with continuous right-hand side. We proved that, the density, local density, weak density and

local weak density of the space of solutions of ordinary differential equations are countable. Also,

we proved that the exponential functor exp is preserve the density, local density, weak density

and local weak density of the space of solutions of ordinary differential equations. Besides,

proved that the functor superextension λ is also preserve the density, local density, weak density

and local weak density of the space of solutions of ordinary differential equations. We will need

this work in our future work to investigate cardinal invariants and functorial properties of the

space of solutions of ordinary differential equations.
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