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Abstract. In this paper we provide a detailed analysis of the density-type properties of the
space of solutions of an ordinary differential equation. We show that the density, local density,
weak density, and local weak density of the space of solutions of an ordinary differential equation
are countable. Furthermore, we prove that these properties are preserved under functors of
hyperspace and superextensions of the space of solutions of an ordinary differential equation.
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Introduction and Preliminaries
The theory of ordinary differential equations is the most interesting section of mathematical

science for research and application (see, for example, [1]-[6]). The study of cardinal properties
of the solution space of differential equations is relevant.
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There are a lot of publications of studying on density-type properties of topological spaces,
are appeared [7]-[11]. The interest in the study of cardinal invariants of topological spaces is
high among mathematicians [12]-[14].

Cardinal function theory constitutes a strong area within the mathematical sciences, offering
a wide range of practical applications. Many real-world problems can be reduced to finding a
cardinal function, along with the topological invariants. A wide range of analytical and numerical
methods has been developed to solve such problems effectively across disciplines in science and
engineering (see, [15], [16]).

In this paper, problems of the theory of cardinal invariants of the space of solutions of an
ordinary differential equation under functor’s hyperspaces and superextensions are considered.

A set A C X is dense in X if A = X. The density is defined as the smallest cardinal number
of the form |A|, where A is a dense subset of X. This cardinal number is denoted by d(X). If
d(X) < Np, then we say that the space X is separable [16].

We say that the local density of a topological space X is 7 at a point x, if 7 is the smallest
cardinal number such that x has a neighborhood of density 7 in X. The local density at a point
x is denoted by ld(z). The local density of a topological space X is defined as the supremum
of all numbers ld(z) for z € X: 1d(X) = sup {ld(z) : = € X} [7, 8]. It is known that, for any
topological space we have ld(X) < d(X).

We say that the weak density of the topological space is 7 > Ny, if 7 is the smallest cardinal
number such that there exists a m-base coinciding with 7 of centered systems of open sets, i.e.
there is a m-base B = U{Ba o€ A}, where B, is a centered system of open sets a € A, such
that |A| = 7. Weak density of topological space X is denoted by wd(X) [7].

Topological space X is said local weak 7-dense at a point x, if 7 is the smallest cardinal
number such that x has a neighborhood of weak density 7 in X. Local weak density at a point
x is denoted by lwd(z). The local weak density of a topological space X is defined as the
supremum of all numbers lwd(z) for z € X : lwd(X) = sup {lwd(z) : v € X} [7], [8].

Let X be a Ti-space. The collection of all nonempty closed subsets of X we denote by expX.
The family B of all sets in the form

O<U1,...,Un>:{F:F€epr, FcC ‘gl Uy, FNU; # @, z':1,2,...,n},whereUl,...,Un

is a sequence of open sets of X, generates the topology on the set expX. This topology is
called the Vietoris topology. The expX with the Vietoris topology is called the exponen-
tial space or the hyperspace of X [15]. Let X be a Tj-space. Denote by exp,X the set
of all closed subsets of X cardinality of that is not greater than the cardinal number n, i.e.
exp, X = {F € expX : |[F| < n}.

Let’s put exp,,X = U{exan n=1,2, }, exp.X = {F € expX : F is compact in X}.
It is clear, that exp,X C exp,X C exp.X C expX for any topological space X.

A system & = {Fa o€ A} of closed subsets of a space X is called linked, if any two elements
of ¢ intersect. Any linked system can be upgraded to a maximum linked system (MLS). But
such upgrade, as a rule, is not one valued. A linked system of space is MLS, if and only if
it possesses the following completeness property [15]: "If a closed set A C X intersects with
every element of £, then A € £”. We denote AX as the set of all MLS of the space X. For the
closed set A C X we consider AT = {f ENX: A€ } For the open set U C X we consider
O(U) = {¢ € AX : there exists F € £ such that F C U}.

The family of sets of the form O(U) covers the set AX (O(X) = AX). So, it forms an open
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prebase of the topology on AX. The set AX, equipped with this topology, is called as the
superextension of the space X [5]. Let X be topological space and AX be its superextension.
MLS € € AX is called compact, if it contains at least one compact element, and is denoted
by CMLS. The space A.X = {f € AX @ €is CMLS} we call as compact super kernel (or
compact superextension) of the topological space X. It is clear that A, X C AX. We see that
X C A X C AX for topological Ti-space X. If the space X is compact, then we have the
equality A. X = AX. If the space X is discrete, then we have another equality \*X = A.X. The
basement of the CMLS ¢ in X is the family §(§) = {F et F isacompact}.

Let us have a differential equation /() = f (t,y(t)), where the function f is continuous in
a domain U. We call a function z € C4(U) a solution of this differential equation, if a) its
domain consists of one point or b) the function z is defined on a certain interval [a, b], where
at each point ¢ of this interval the derivative 2’ exists and is equal to f(t,z(t)). Of course,
assigning a function to solutions in accordance with a) is a certain artificial device. However we
can’t do without it, since otherwise at each step of our construction we would have to make the
appropriate reservations. Let Z be the set of all solutions of our differential equation defined
in this way. What properties of this set are used when discussing the topological properties of
solutions of the equation? Let us list the main ones.

1. If the function z belongs to the set Z and the segment I lies in the domain of definition
of the function z, then z|; € Z.

2. If the intersection I of the domains of definition of functions z, 21,20 € Z is nonempty
and z1|r = z2|7, then a function defined on a segment 7(z1) N m(z2):

z1(t), at t € w(z1),

(0 = {22(75), at t € 7 (22)

also belongs to the set Z.

3. The set Z contains all functions belonging to Cs(U), the domain of the definitions of
which are one-point, and if the function z € Cs(U) given on a certain segment [a,b], where
a < b, satisfies the condition: for any segment I lying in the interval (a,b), z|; € Z, then
z € Z. The solution set Z satisfies Conditions 1 and 2 and the first part of Condition 3 follows
immediately from our definition of a solution. Satisfaction of the second part of Condition 3
can be proven. For example, we use Lagrange’s formula, which is well-known from introductory
mathematical analysis. We now turn to those properties of the solution set that form the content
of the first fundamental theorems of the theory of ordinary differential equations.

4. For any point (¢,y) in the domain U, there exists a function z, belonging to the set Z,
defining on some interval. The interval contains the point ¢ within itself, and taking the value y
at the point ¢. This property easily aligns with the property involved in the solution existence
theorem.

5. For any compact subset K of U, the set Zk is compact. Here and below, for M C U
and Z C C5(U) we denote Zy = {z: z € Z, Gr(z) C M}. Compactness implies the existence
of limit points for infinite sets. However, from the elements of an infinite set, one can select a
sequence (of pairwise distinct elements), and, therefore, compactness is equivalent (in the case
of a metric space) to the ability to select a convergent subsequence from an arbitrary sequence
of points. This property of solution sequences (under appropriate additional assumptions) is
constantly used in the theory of ordinary differential equations. Condition 5, which we have
presented, is advantageous in that, when formulated concisely, it has a zone of immediate validity
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significantly broader than ordinary conditions of this type.

6. If the domains of definition of the functions z1,29 € Z coincide and at some point ¢ of
their common domain of definition z;(¢) = z2(t), then z; = 29 (i.e., the functions coincide over
the entire domain of definition). Here it is easy to recognize the property that appears in the
uniqueness theorem.

7. For any point (¢,y) of the domain U there is a number 6 > 0 such that for any point
s€(t—0,t+0) theset {z(s):z € Z, s,t € m(z), 2(t) = y(t)} is connected.

For some undefined or related concepts, we refer the reader to [2] and [15]-][22].

1 Main results

Let I = [a,b] C R be compact and consider the ordinary differential equation
() = f(t,z(t), tel, (1.1)

where f: I x R" — R" is continuous and locally Lipschitz with respect to x.

Fix tg € I. For each zg € R", the initial value problem
a'(t) = f(t,x(t), x(to) = o

admits a unique solution z(-,zg) € C'(I,R").
Define
S ={x(-,x0) : ko € R"} C C(I,R"),

endowed with the subspace topology induced by the supremum norm.

Lemma 1.1. The map
¢ :R" - C(I,R"), P(x9)=x(-,x0),
18 continuous.

Proof. Let zg,yo € R™ and denote u(t) = z(t, zo), v(t) = x(t,y0). Then

t

[u(t) = ()] < llzo — yoll + /LHU(S) — (sl ds,

to

where 0 < L = const is a Lipschitz constant of f on a suitable compact set. By Gronwall’s

inequality, we obtain
[u(t) = v(®)]| < [lzo — yolle™ .

Taking supremum over ¢t € I yields
[®(20) — @(yo)lloo < Cllzo — yoll-
Hence follows that ® is continuous. O

Lemma 1.2. The mapping ® is injective.

Proof. If ®(z¢) = ®(yp), then x(tg, z0) = x(to,y0). Hence, we get xy = yo by uniqueness of
solutions. O
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Corollary 1.1. . is homeomorphic to ®(R™).

Lemma 1.3. R" has countable density.

Proof. The set Q" is countable and dense in R". ]

Theorem 1.1.
d(.) =1d(Y) = No.

Proof. By continuity of ®, the image of a dense set is dense in the image. Thus ®(Q") is
dense in .7, so d(.¥) < Rg. Since . is infinite, its density cannot be finite.

As . is metrizable, local density coincides with density at every point. Hence ld()
No. O

Theorem 1.2.
wd(S) = lwd(L) = V.

Proof. In metrizable spaces, the weak topology generated by continuous real-valued func-
tions coincides with the original topology. Therefore weak closure equals ordinary closure. Thus,
weak density equals density, and the same holds locally. O

Theorem 1.3. If .7 is a space of solutions of an ordinary differential equation, then
d(exp, (7)) = d(.#).

Proof. Assume that d(.’) = k. Let D C . be a dense subset with |D| = k. Consider the
family
2 ={K C D : K is nonempty and finite}.

Since D is dense in .#, every nonempty open set in exp,(.#) contains some finite subset of
D. Consequently, Z is dense in exp.(.#). Moreover, we have |Z| = k. Hence, we obtain
d(exp.()) < k.

Conversely, since . embeds homeomorphically into exp,(.#) via x — {z}, we have d(.) <
d(exp.(-#)). Therefore d(exp.(.¥)) = d(). O

Corollary 1.2. For the solution space .,

d(exp.(-7)) = No.
Theorem 1.4. If . is a space of solutions of an ordinary differential equation, then

ld(exp.(-)) = ld(.¥).

Proof. Let K € exp.(.¥). Every basic neighborhood of K in the Vietoris topology is
determined by finitely many open neighborhoods in /. Since . is metrizable, each such
neighborhood has density at most ld(.#). Finite products and finite unions preserve local

density bounds. Hence
ld(K,exp.()) < ld(.7).

Conversely, for any = € ., the embedding x +— {x} preserves neighborhoods. Thus ld(.¥) <
ld(exp.(-¥)). O
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Corollary 1.3.
ld(exp (7)) = No.

Theorem 1.5. If X is metrizable, then
wd(exp, (X)) = d(exp.(X)), lwd(exp.(X)) = ld(exp.(X)).
Proof. In metrizable spaces, the weak topology generated by continuous real-valued func-
tions coincides with the original topology. Since exp.(X) is metrizable whenever X is, weak

closure equals ordinary closure. Thus, weak density and local weak density coincide with their
classical counterparts. O

Corollary 1.4.
wd(exp () = lwd(exp. (7)) = Ro.

Theorem 1.6. If X is separable metrizable, then
d(AX) = d(X).
Proof. The superextension AX is a continuous image of exp.(exp.(X)). By Theorem 1.3,
d(expe(exp.(X))) = d(X).

Since density does not increase under continuous images, we obtain d(AX) < d(X). The natural
embedding of X into AX implies the reverse inequality. O

Theorem 1.7. If X is metrizable, then
ld(A\X) = 1d(X).
Proof. Let £ € AX. Neighborhoods of £ are determined by finitely many open sets in X.

Using metrizability, each such neighborhood contains a dense subset of size at most ld(X). Thus
ld(AX) < 1d(X). The canonical embedding of X into AX yields the opposite inequality. O

Theorem 1.8. If X is metrizable, then
wd(AX) = lwd(AX) = d(X).

Proof. Since AX is metrizable whenever X is, weak and ordinary topologies coincide. Thus

weak density invariants reduce to classical density invariants, which are preserved by Theorems
1.6 and 1.7. O

Corollary 1.5. For the solution space .,
d(\S) =1ld\Y) = wd(\Y) = lwd(\.¥) = Ry.
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Conclusion

We study density-type properties of the space of solutions of ordinary differential equations
with continuous right-hand side. We proved that, the density, local density, weak density and
local weak density of the space of solutions of ordinary differential equations are countable. Also,
we proved that the exponential functor exp is preserve the density, local density, weak density
and local weak density of the space of solutions of ordinary differential equations. Besides,
proved that the functor superextension A is also preserve the density, local density, weak density
and local weak density of the space of solutions of ordinary differential equations. We will need
this work in our future work to investigate cardinal invariants and functorial properties of the
space of solutions of ordinary differential equations.
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