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Abstract. This article presents the application of a Stefan-type two-phase free boundary prob-
lem to model dynamics of the prosthesis-tissue interface in dentistry and prosthetics. Addressing
issues such as stress concentrations and tissue damage caused by biomechanical incompatibility,
a mathematical model based on reaction-diffusion equations is proposed to describe the temporal
evolution of the free boundary. The existence and uniqueness of global classical solution of the
model are rigorously proven. The regularity of the free boundary is examined, and a computa-
tional scheme is introduced to visualize the interface dynamics. The findings are directed towards
optimizing the long-term stability and osseointegration of dental prostheses.
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1 Introduction. Problem statement

The incorporation of mathematical modeling in contemporary dentistry and prosthetics

has radically evolved diagnostic and treatment procedures, spurred on by the intersection of

digital technologies, machine intelligence, and sophisticated computational approaches. Such

advances have greatly improved the speed of designing, fabricating, and clinically testing dental

prostheses, shortening production lead times and boosting success rates for patients [1]. One

of the major difficulties in this field is biomechanical incompatibility between bone tissues and

prosthetic materials, exhibited by stress concentrations and possible tissue lesions under func-

tional loading conditions [2], [3]. Such incompatibility usually causes implant failure, based on

studies demonstrating failure rates of as high as 10% of implantations monitored for five years

[3]. This work tackles this urgent condition by proposing a new Stefan-type two-phase free

boundary model for forecasting dynamic progression of the interface of a prosthesis with its

tissue setting and for long-term clinical performance optimization.

24



During the last one decade, mathematical modeling has been transformed to tackle different

facets of prosthetics. Stress distributions have been enhanced by a maximum of 20% by finite

element analyses, as illustrated by [4]. However, frequently, models of reaction-diffusion are

inclined to ignore time-dependent relationships across the tissue-prosthesis interface. Reaction-

diffusion models, by contrast, have been successful for modeling biological phenomena like tissue

regeneration and angiogenesis [5]. The molecular transport prediction has been emphasized

by [6], [7]. Nevertheless, normally, both approaches oversimplify physico-biological dynamics,

specifically by assuming a dynamically changing free boundary, by which long-term stability

and osseointegration are predominantly governed [8]. For example, [2] attempted to model

stress but did not include tissue regeneration, for which there remains a critical void in the

literature attempted to be fulfilled by this study.

In order to bypass these constraints, we suggest a two-phase free boundary model of a

Stefan type, designed for the dental setting, based on the profound theory of free boundary

problems of mathematical physics [2], [9]. Commonly used for phase boundaries of biological

systems [9]–[17], it is a comprehensive framework for analyzing the boundary of a prosthesis

and tissue. We give a precise proof of existence and uniqueness of a global classical solution,

investigate regularity of a free boundary, and add a computational method for an illustration

of dynamics of an interface. This multidisciplinary effort unites mathematician’s, biologist’s,

dentist’s, and engineer’s expertise, as is consistent with new developments of smart prostheses,

neural integration, and personalized therapy [18]–[23].

The effectiveness of dental prostheses depends on biological phenomena like diffusion, molec-

ular transport, and biochemical reactions involving proteins, cells, trophic factors, and angio-

genesis ([22], [23]). Reaction-diffusion models have proved invaluable for describing these phe-

nomena [5]–[7], but their exploitation for dental prosthetics is novel. The selection of material,

an optimization task of a complex kind, is assisted by mathematical models for the stress dis-

tribution and the prediction of life expectancy [24], [25], and the integration of CAD / CAM

also facilitates patient-specific designs [1]. Dynamical modeling of the interface, for example,

was absent for a 15% reduction in material wear by optimized selection by [25].

Free-boundary problems based on mathematical physics enable the modeling of multiphase

interfaces [9], directly applicable to tissue-biomaterial interfaces in prostheses. This approach

helps simulate cell proliferation and tissue regeneration [10], addressing the shortcomings of

existing models due to omissions. The new two-phase approach requires interdisciplinary col-

laboration, the use of mathematical methods to clarify complex physical and biological systems,

and facilitate the development of new technologies, such as intelligent prostheses.

Mathematical models have increased prosthesis lifetimes by as much as 25% and decreased

complications by 12%, respectively, as noted in [1], by speeding up production. The current study

completes a major gap in dental studies by, for the first time, implementing a Stefan-type model

for real-world applications of dentalscapes. It offers theoretical guarantees of solution existence

and uniqueness, studies regularities of free boundaries, and provides a numerical structure to

see the pictures of interface dynamics, opening new ways of better prosthetic designs and better

care for patients.

For substrate concentrations, representing substances on both sides by u(x, t) (prosthetic

side) and v(x, t) (tissue side), we suggest reaction-diffusion model

k1(u)ut − d1(u)uxx − c1ux = u(a1 − b1u), (x, t) ∈ D1, (1.1)
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k2(v)vt − d2(v)vxx − c2vx = v(a2 − b2v), (x, t) ∈ D2, (1.2)

where D1 =
{
(x, t) : 0 < t ≤ T, −ℓ < x < s(t)

}
, D2 =

{
(x, t) : 0 < t ≤ T, s(t) ≤ x ≤ ℓ

}
.

The initial and boundary conditions, and free boundary evolution equation are given respec-

tively as

u(x, 0) = u0(x), −ℓ ≤ x ≤ s(0), v(x, 0) = v0(x), s(0) ≤ x ≤ ℓ, (1.3)

u(−ℓ, t) = φ1(t), v(ℓ, t) = φ2(t), 0 ≤ t ≤ T, (1.4)

u(s(t), t) = v(s(t), t) = 0, 0 ≤ t ≤ T, (1.5)

ṡ(t) = −αux(s(t), t) + βvx(s(t), t), s(0) = 0, 0 ≤ t ≤ T, (1.6)

where capacity is given by ki(u)ut and diffusion by di(u)uxx, convection is accounted.

We assume hereonwards:

ki, di ∈ C1([0,∞)) with 0 < d−i ≤ di(ξ) ≤ d+i ≤ 10−1 and 0 < k−i ≤ ki(ξ) ≤ k+i ≤ 10−4 for all

ξ ≥ 0 (i = 1, 2),

α, β, ai, bi, ci (i = 1, 2) are positive constants determining diffusion rates and reaction coefficients,

with typical ranges,

u0 ∈ C2+α[−ℓ, 0], v0 ∈ C2+α[0, ℓ], u0, v0 ≥ 0 with u0(0) = v0(0) = 0, lim
x→0

u0(x)

s(0)− x
= 0,

lim
x→0

v0(x)

x− s(0)
= 0,

φ1, φ2 ∈ C1+α[0, T ], φi ≥ 0.

Two-phase free boundary problems find numerous applications in biological processes [8, 10],

material science [27], and physics [26]. There have been new major contributions to existence,

uniqueness, and qualitative behavior of solutions for such problems during the last few years [28]–

[31]. Specifically, reaction-diffusion equations involving free boundaries have been considered

deeply investigated in [32].

The precise modeling of endodontic and periodontic dental prostheses via two-phase free

boundary problems, e.g., of Stefan-type like one described by Equations (1.1)–(1.6), significantly

depends on deriving the mathematical behavior of solutions. A priori estimates are useful for

guaranteeing solution stability, uniqueness, and regularity, which directly affect clinical results

like osseointegration and durability of a prosthesis [3], [8]. The estimates are important source

bounds for solution constituents ((u(x, t), v(x, t), and ṡ(t)) and their partial derivatives, both

for theoretical study and numerics.

2 A priori estimates

The principal conclusions of this paper are provided by a series of theorems enumerating

some basic properties of the solutions u(x, t), v(x, t) and ṡ(t) to the Stefan-type problem pro-

vided by Equations (1.1)–(1.6). The first is positivity and boundedness (Theorem 2.1), and

then Holder-type estimates for first derivatives (Theorem 2.2) and lastly higher-order derivative

bounds (Theorems 2.3 and 2.4). These results are obtained applying the maximum principle

and coordinate transformation techniques from [5], [33] to solve the moving boundary problem
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in the dental prosthesis case. The proofs rely on auxiliary ordinary differential equations and

transformed coordinates to ensure fulfillment of the system’s physical constraints.

Theorem 2.1. Let the functions s(t), u(x, t), v(x, t) be a solution of problem (1.1)–(1.6) in

domains D1 and D2. Suppose there exist constants N1, N2 such that

N1 ≥ max

{
sup

x∈[−ℓ,0]

(
− u0(x)

x

)
,
−a21
b1c1

}
, N2 ≥ max

{
sup
x∈[0,ℓ]

(
v0(x)

x

)
,
a22
b2c2

}

with 0 < u0(x) ≤
a1
b1

for x ∈ [−ℓ, s(0)], and 0 < v0(x) ≤
a2
b2

for x ∈ [s(0), ℓ]. Then there exist

positive constants M1, M2, M3, independent of T , such that

0 < u(x, t) ≤M1 = max

{
a1
b1
, ∥u0∥∞, ∥φ1∥∞

}
, (x, t) ∈ D1, (2.1)

0 < v(x, t) ≤M2 = max

{
a2
b2
, ∥v0∥∞, ∥φ2∥∞

}
, (x, t) ∈ D2, (2.2)

0 < ṡ(t) ≤M3, 0 < t ≤ T. (2.3)

Proof. By the maximum principle, u(x, t) ≥ 0 and v(x, t) ≥ 0 separately, in their domains,

respectively. Since u0(0) > 0, v0(0) > 0, by the virtue of the strengthened maximum principle

u(x, t) > 0, (x, t) ∈ D1, v(x, t) > 0, (x, t) ∈ D2.

Consequently,

ux(s(t), t) < 0, vx(s(t), t) > 0, t > 0.

Then from (1.6) we have ṡ(t) > 0, 0 < t ≤ T.

In order to obtain the upper bounds, we utilize the accomplishment from the work on the

construction on the upper solved [5], [15] and then the comparison theorem [32].

In order to establish the upper limit the derivative ṡ(t) in the problem (1.1), substituting

the values in the form of U(x, t) = u(x, t) +N1(x− s(t)) will get
k1(U)Ut − d1(U)Uxx − c1Ux ≤M1a1 + c1N1 ≤ 0, (x, t) ∈ D1,

Ux(t, 0) = N1 > 0, 0 ≤ t ≤ T,

U (0, x) = u0(x) +N1x ≤ 0, −l ≤ x ≤ s(0) = 0,

U (t, s(t)) = 0, 0 ≤ t ≤ T.

Because the selection of N1 and by the greatest principle, we get U(x, t) ≤ 0, (x, t) ∈ D̄1.

Therefore we have

u(x, t) ≤ N1(s(t)− x), −l ≤ x ≤ 0.

Consequently, we obtain Ux(s(t), t) = ux(s(t), t) +N1 ≥ 0.

Similarly, we obtain

ux(s(t), t) ≥ −N1, vx(s(t), t) ≤ N2.

Finally, the estimate (2.3) is derived, then from the Stefan condition we obtain

ṡ(t) ≤ αN1 + βN2 =M3.

Theorem 2.1 is proved.
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Now, applying the work’s results [33], we define a priori estimations for the derivatives ux,

vx and the following ones.

Now in the problem (1.1)–(1.6) we will substitute the independent changes

(x, t) → (y, τ) , τ = t, y =
2x− s(t) + l

l + s(t)
,

x = −l � y = −1, x = s(t) � y = 1,

(x, t) → (y, τ) , τ = t, y =
2x− s(t)− l

l − s(t)
,

x = l � y = 1, x = s(t) � y = −1.

Then the domains Di correspond to the domains Q = {(y, τ) : 0 < τ < T, −1 < y < 1}.
Limited functions U (y, τ) = u (x, t), V (y, τ) = v (x, t) are the solution to the problem

Uτ −A1Uyy −B1 = 0, (y, τ) ∈ Q,

Vτ −A2Vyy −B2 = 0, (y, τ) ∈ Q,

U (y, 0) = U0 (y) , V (y, 0) = V0 (y) , −1 ≤ y ≤ 1,

U (1, τ) = 0, V (−1, τ) = 0, 0 ≤ τ ≤ T,

U (−1, τ) = φ1(t), V (1, τ) = φ2(t) 0 ≤ τ ≤ T,

(2.4)

where
U0 (y) = u0

(
s(τ)− l + (l + s(τ)y)

2

)
,

V0 (y) = v0

(
s(τ) + l + (l − s(τ))y

2

)
,

− 1 ≤ y ≤ 1, ṡ(t) = −αUy (1, τ) + βVy (−1, τ) ,

Ai =
4di(ω)

ki(ω)(l ± s(t))2
, Bi =

[
2ci[l ± s(t)]− 2ṡ(t)ki(ω)(x± l)

ki(ω)(l ± s(t))2

]
ωy +

(ai − biω)

ki(ω)
ω.

Now, by the theorems in [5], derive Holder type estimates for equations with systems. We

define the following notations Qδ = {(y, τ) : 0 < δ ≤ τ ≤ T , −1 + δ ≤ y ≤ 1− δ} . We put the

theorem into the function V (y, τ).

Analogous results are true for U (y, τ).

Theorem 2.2. Let the function V (y, τ) be continuous in Q together with Vy and satisfy the

conditions of the problem (2.4) in Q. Then holds

|Vy(y, τ) | ≤M5

(
M2, d

−
2 , δ

)
, (y, τ) ∈ Qδ. (2.5)

If V
∣∣∣
Γ(τ=0, y=±1)

= 0, then for (y, τ) ∈ Q holds

|Vy(y, τ) | ≤M5 (M2, d2, A20) ,

where A20 = min
Q

A2, Γ (τ = 0, y = ±1) – parabolic border.
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Proof. Since the estimates of |u | ≤ M1, | v | ≤ M2, | ṡ(t) | ≤ M3, respectively, we obtain

the boundedness of the function U(y, τ) and V (y, τ), then, by Theorem 2.1 of [33] the internal

estimate (2.5) holds.

We turn to the proof of (2.5). For replacement the problem (2.4) we put

W (y, τ) = V (y, τ)− V0 (y) .

At first, the condition diminishes into a homogeneous one. So, the problem (2.4) is equivalent

to

Wτ = A2Wyy +G2 (W,F2, V0) , (t, y) ∈ Q, (2.6)

W (y, 0) = 0, −1 ≤ y ≤ 1, (2.7)

Wy (t, 0) =W (t, 1) = 0, 0 ≤ t ≤ T, (2.8)

where

G2 (W,F2, U0, ) = F2 −A2V0yy +B2V0y +W (a2 − b2(V + V0)) .

Coefficients of the equation of the problem (2.6)–(2.8) are bounded due to Theorem 2.1. The

proof is completed as in [11], [15], [33], [34]. Theorem 2.2 is completely proved.

We go on to obtaining a priori estimation on the higher derivatives. From (1.2), we rephrase

the equation as

vt = p(v)vxx + q(v, vx),

where

p(v) =
d2(v)

k2(v)
, q(v, vx) =

v(a2 − b2v) + c2vx
k2(v)

.

Theorem 2.3. Let the function v(x, t) in the problem be continuous in D2 with vx and meets

the conditions of the problem (1.2). Moreover, we suppose

| q(v, vx) |
p(v)

≤ R
(
v2x + 1

)
, R = const > 0.

Then the following estimate is true | vx(x, t) | ≤ M5(M2, R, d0) in Dδ
2. If, in addition, the

function u (x, t) in D1 is supposed summable with a square, the generalized derivatives of uxx
and utx, then there is also M5 =M5(M2, R, d

−
2 ), such that | v |1+γ ≤M6

(
M5

)
.

Proof. The theorem is proved as in [33, Theorem 4.1], using linear equation methods.

Theorem 2.4. Let the coefficients of equation

ã (x, t) vxx + b̃ (x, t) vx + c̃ (x, t) v − vt = f̃ (x, t) , (x, t) ∈ Q (2.9)

satisfy the Holder conditions

|ã|Qγ + |b̃|Qγ + |c̃|Qγ + |f̃ |Qγ <∞, ã (y, t) ≥ a0 > 0.

Let v (x, t) be solution of the equation (2.9) with v|Γ(t=0,x=±1) = 0,
∣∣∣ v ∣∣∣Q

2+γ
< +∞ and M =

max
Q

| v (x, t) |. Then

|v|Q2+γ ≤ C
(
|f̃ |Qγ +M

)
≡M7. (2.10)
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The theorem 2.4 is proved as the theorem in [33, Theorem 4.1].

Reasoning similarly as above, applying methods from [33, 34], we get the following estimates

for |ux |, |u|1+β2 , |u|2+β2 in D1.

3 Uniqueness of solution

Valid modeling of every mathematical model of dental prostheses, particularly two-phase free

boundary systems such as the system of Stefan type governed by equations (1.1)–(1.6), relies

on establishing uniqueness of the solutions. A number of clinical practice solutions can provide

discordant forecasts of interface between the tissue and the prosthesis dynamics, disappointing

design and service life of the implants [3], [8].

We have the following system in the intervals D1 and D2:(
ψ1(u)

)
t
−
((
ϕ1(u)

)
ξ
+ c1u

)
ξ
= u

(
a1 − b1u

)
in D1, (3.1)(

ψ2(v)
)
t
−
((
ϕ2(v)

)
ξ
+ c2v

)
ξ
= v

(
a2 − b2v

)
in D2, (3.2)

where

ψi(w) =

w∫
0

ki(η) dη, ϕi(w) =

w∫
0

di(η) dη, i = 1, 2.

Moreover, since
(
ϕi(w)

)
ξ
= di(w)wξ at ξ = s(t) in particular, we have:

(ϕ1)ξ(s, t) = d1(0)uξ(s, t), (ϕ2)ξ(s, t) = d2(0) vξ(s, t).

Integrating equation (3.1) over D1 and using ψ1(u(s, η)) = 0 on the free boundary, we obtain:

t∫
0

(ϕ1)ξ(s(η), η) dη =

s(t)∫
−ℓ

ψ1(u(ξ, t)) dξ −
0∫

−ℓ

ψ1(u0(ξ)) dξ−

−
∫∫
D1

u
(
a1 − b1u

)
dξdη +

t∫
0

[(
ϕ1

)
ξ
(−ℓ, η) + c1u(−ℓ, η)

]
dη. (3.3)

Similarly, integrating equation (3.2) over D2 and using v(s(η), η) = 0 gives:

t∫
0

(
ϕ2

)
ξ

(
s(η), η

)
dη =

ℓ∫
0

ψ2

(
v0(ξ)

)
dξ −

ℓ∫
s(t)

ψ2

(
v(ξ, t)

)
dξ+

+

∫∫
D2

v
(
a2 − b2v

)
dξdη −

t∫
0

[(
ϕ2

)
ξ
(ℓ, η) + c2v(ℓ, η)

]
dη. (3.4)

Using (ϕi)ξ(s, η) = di(0)wξ(s, η) we have

uξ(s, η) =
(ϕ1)ξ(s, η)

d1(0)
, vξ(s, η) =

(ϕ2)ξ(s, η)

d2(0)
.
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Integrating ṡ(t) from 0 to t gives:

s(t) = −αd1(0)
t∫

0

(ϕ1)ξ(s(η), η) dη + βd2(0)

t∫
0

(ϕ2)ξ(s(η), η) dη. (3.5)

Substituting (3.3) and (3.4) into (3.5), we obtain the explicit representation:

s(t) = − α

d1(0)

{ s(t)∫
−ℓ

ψ1(u(ξ, t)) dξ −
0∫

−ℓ

ψ1(u0(ξ)) dξ −
∫∫
D1

u(a1 − b1u) dξdη

+

t∫
0

[
(ϕ1)ξ(−ℓ, η) + c1φ1(η)

]
dη

}
+

β

d2(0)

{ ℓ∫
0

ψ2(v0(ξ)) dξ −
ℓ∫

s(t)

ψ2(v(ξ, t)) dξ+

+

∫∫
D2

v(a2 − b2v) dξdη −
t∫

0

[
(ϕ2)ξ(ℓ, η) + c2φ2(η)

]
dη

}
. (3.6)

Equation (3.6) is the full explicit integral representation of the free boundary s(t).

Theorem 3.1. Suppose that the conditions of Theorem 2.1 are satisfied. Then the solution

of problem (1.1)–(1.6) is unique.

Proof. We establish uniqueness for small t and then prolong it towards the interval 0 < t <

∞.

Assume two distinct solutions (s1, u1, v1) and (s2, u2, v2). We define the following difference

quantities and functions y(t) = min
{
s1(t), s2(t)

}
, h(t) = max

{
s1(t), s2(t)

}
, ∆s(t) =

∣∣ s1(t) −
s2(t)

∣∣ free boundary difference. The functions ψi obey the Lipschitz conditions∣∣ψ1(u1)− ψ1(u2)
∣∣ ≤ Lψ1 |U |,

∣∣ψ2(v1)− ψ2(v2)
∣∣ ≤ Lψ2 |V |,

where Lψi
= max

∣∣ ki(η) ∣∣.
The reaction term: f(ω) := ω

(
ai − biω

)
is Lipschitz with∣∣ f(ωi)− f(ωi)

∣∣ ≤ Lf |W |,

where ω(x, t) =

{
u(x, t), (x, t) ∈ D1,

v(x, t), (x, t) ∈ D2,
Lf = ai + 2biMi.

From (3.6), the difference is:

| s1(t)− s2(t) | ≤
α

d1(0)

{ y(t)∫
−ℓ

(
ψ1

(
u1(ξ, t)

)
− ψ1

(
u2(ξ, t)

))
dξ +

h(t)∫
y(t)

ψ1

(
ui(ξ, t)

)
dξ+

+

t∫
0

dη

y(η)∫
−ℓ

[
u1

(
a1 − b1u1

)
− u2

(
a1 − b1u2

)]
dξ +

t∫
0

dη

h(η)∫
y(η)

ui
(
a1 − b1ui

)
dξ

}
+
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+
β

d2(0)

{ l∫
y(t)

(
ψ2

(
v1(ξ, t)

)
− ψ2

(
v2(ξ, t)

))
dξ +

h(t)∫
y(t)

ψ2

(
vi(ξ, t)

)
dξ+

+

t∫
0

dη

ℓ∫
y(η)

[
v1
(
a2 − b2v1

)
− v2

(
a2 − b2v2

)]
dξ +

t∫
0

dη

h(η)∫
y(η)

vi
(
a2 − b2vi

)
dξ

}
. (3.7)

where ui, vi(i = 1, 2) – decisions between y(t) and h(t), t.e

(ui (x, t) , vi (x, t)) =

{
u1 (x, t) , v1 (x, t) , if s2 (t) < s1 (t) ,

u2 (x, t) , v2 (x, t) , if s2 (t) > s1 (t) .

By Theorem 2.1, we have

|ui(x, t) | ≤ N1

(
y(t)− x

)
, | vi(x, t) | ≤ N2

(
x− y(t)

)
,∣∣u1(y(t), t)− u2

(
y(t), t

) ∣∣ ≤M4 | s1(t)− s2(t) | ,
∣∣ v1(y(t), t)− v2

(
y(t), t

) ∣∣ ≤M5 | s1(t)− s2(t) | ,

where M4 = max
D1

|ux(x, t) | , M5 = max
D2

| vx(x, t) |.

For difference V (x, t) = v1(x, t)− v2(x, t), U(x, t) = u1(x, t)− u2(x, t), the systems are
d1(u2)Uxx + c1Ux + q1(x, t)U = k1(u2)Ut in D1

U(x, 0) = 0, −ℓ ≤ x ≤ 0

U(−ℓ, t) = 0, 0 ≤ t ≤ T

U(y(t), t) ≤ N3 max
0≤η≤t

|∆s(τ)| , 0 ≤ t ≤ T

(3.8)


d2(v2)Vxx + c2Vx + q2(x, t)V = k2(v2)Vt in D2

V (x, 0) = 0, 0 ≤ x ≤ ℓ

V (ℓ, t) = 0, 0 ≤ t ≤ T

V (y(t), t) ≤ N4 max
0≤η≤t

|∆s(τ)| , 0 ≤ t ≤ T

(3.9)

where |q1(x, t)| ≤ Lf+Lb1 |u1t|+La1 |u1xx|, |q2(x, t)| ≤ Lf+Lb2 |v1t|+La2 |v1xx| ≤ q̄1, are bounded.

From the problem (3.8) and (3.9) by the principle of maximum we find estimates

|U(x, t) | ≤ N3 max
0≤η≤t

M(t), |V (x, t)| ≤ N4 max
0≤η≤t

M(t),

where M(t) = max
0≤τ≤t

|∆s(τ) | – maximum boundary difference.

Assume ui, vi are bounded |ui| ≤ ū, |vi| ≤ v̄. The difference h(t)−y(t) is bounded h(t)−y(t) ≤
M(t).

Then estimate each integral individually.

1. For terms connected with α, using Lipschitz property

|ψ1(u1)− ψ1(u2)| ≤ Lψ1 |U | ≤ Lψ1N3M(t),

and as the integral length fulfills the condition y(t) + ℓ ≤ 2ℓ, we obtain

I1 =

∣∣∣∣∣∣∣
y(t)∫
−ℓ

(
ψ1(u1)− ψ1(u2)

)
dξ

∣∣∣∣∣∣∣ ≤ 2ℓLψ1N3M(t).
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Since |ψ1(ui) | ≤ ψ̄1, we get

I2 =

∣∣∣∣∣∣∣
h(t)∫
y(t)

ψ1(ui)dξ

∣∣∣∣∣∣∣ ≤ ψ̄1M(t).

Using the Lipschitz property

|u1(a1 − b1u1)− u2(a1 − b1u2) | ≤ L1|U | ≤ L1N3M(η),

and the integration length is at most 2ℓ, then, consequently, we obtain

I3 =

∣∣∣∣∣∣∣
t∫

0

dη

y(η)∫
−ℓ

[
u1(a1 − b1u1)− u2(a1 − b1u2)

]
dξ

∣∣∣∣∣∣∣ ≤ 2ℓL1N3

t∫
0

M(η)dη.

Applying the inequality

|ui(a1 − b1ui) | ≤ ū
(
|a1|+ |b1|ū

)
= Cu,

we obtain

I4 =

∣∣∣∣∣∣∣
t∫

0

dη

h(η)∫
y(η)

ui(a1 − b1ui)dξ

∣∣∣∣∣∣∣ ≤ Cu

t∫
0

M(η)dη.

2. Constants connected with β.

Similarly, we have:

J1 =

∣∣∣∣∣∣∣
ℓ∫

y(t)

(
ψ2(v1)− ψ2(v2)

)
dξ

∣∣∣∣∣∣∣ ≤ ℓLψ2N4M(t),

J2 =

∣∣∣∣∣∣∣
h(t)∫
y(t)

ψ2(vi)dξ

∣∣∣∣∣∣∣ ≤ ψ̄2M(t),

J3 =

∣∣∣∣∣∣∣
t∫

0

dη

l∫
y(η)

[
v1(a2 − b2v1)− v2(a2 − b2v2)

]
dξ

∣∣∣∣∣∣∣ ≤ ℓL2N4

∫ t

0
M(η)dη,

J4 =

∣∣∣∣∣∣∣
t∫

0

dη

h(η)∫
y(η)

vi(a2 − b2vi)dξ

∣∣∣∣∣∣∣ ≤ Cv

t∫
0

M(η)dη.

Further we have

| s1(t)− s2(t) | ≤
α

d1(0)

{
I1 + I2 + I3 + I4

}
+

β

d2(0)

{
J1 + J2 + J3 + J4

}
.
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Gathering all the estimates, we get

| s1(t)− s2(t) | ≤
α

d1(0)

[
2ℓLψ1N3M(t) + ψ̄1M(t) +

(
2ℓL1N3 + Cu

) t∫
0

M(η)dη

]
+

+
β

d2(0)

[
ℓLψ2N4M(t) + ψ̄2M(t) +

(
ℓL2N4 + Cv

) t∫
0

M(η)dη

]
.

It can be expressed as

∣∣ s1(t)− s2(t)
∣∣ ≤ A0M(t) +B0

t∫
0

M(η)dη,

where A0 =
2ℓαN3Lψ1 + αψ1

d1(0)
+
ℓβN4Lψ2 + βψ2

d2(0)
, B0 =

2ℓαN3L1 + αCu
d1(0)

+
ℓβN4L2 + βCv

d2(0)
.

Since M(t) = max0≤τ≤t
∣∣ s1(τ)− s2(τ)

∣∣, we have

M(t) ≤ A0M(t) +B0

t∫
0

M(η)dη.

If A0 < 1, i.e.
2ℓαN3Lψ1 + αψ1

d1(0)
+
ℓβN4Lψ2 + βψ2

d2(0)
< 1, then

M(t) ≤ B0

1−A0

t∫
0

M(η)dη.

Application of Gronwall inequality gives the result that M(t) = 0. Hence, s1(t) = s2(t).

Provided the ui, vi are bounded by the same way as ū, v̄, and h(t)− y(t) ≤M(t), we obtain the

uniqueness of the solution.

For extension, let

t1 = sup
{
t : s1(η) = s2(η), u1(η, x) = u2(η, x), v1(η, x) = v2(η, x), 0 ≤ η ≤ t

}
.

If t1 <∞, then repeat the argument on
[
t1, t1 +∆t

]
with initial conditions

s1(t1) = s2(t1), u1(t1, x) = u2(t1, x), v1(t1, x) = v2(t1, x).

Repeating the previous argument on
[
t1, t1 +∆t

]
under these initial conditions, we get

s1(t) = s2(t), u1(t, x) = u2(t, x), v1(t, x) = v2(t, x) for t1 ≤ t ≤ t1 +∆t,

which goes against the definition of t1. Therefore, t1 = ∞, and the two solutions are the same

for all 0 < t <∞.

34



4 The Existence Result

When determining the maximum interval of existence of the solution of Stefan’s problems, three

factors are taken into account:

nondegeneracy of a domain;

the presence of a priori estimates of norms in the corresponding space;

boundedness below and above the modulus of the gradient of the solution on the free boundary.

If you impose some restrictions (ensuring the fulfillment of the above factors on an arbitrary

time interval) for the given problems, then the classical solution of the Stefan problem exists for

all positive values of time.

Theorem 4.1. Under assumption of Theorems 2.1–3.1, there exist a solution u(x, t) ∈
C2+γ

(
D1

)
, v(x, t) ∈ C2+γ

(
D2

)
, s(t) ∈ C1+γ ([0, T ]) problem (1.1)–(1.6).

Proof. Since the domain under consideration does not degenerate, the Holder function of

the derivative ṡ(t) is proved and a priori estimates of norms in the space C2+γ for v(t, x) are

obtained, then we can prove the global solvability of the [5] problem. To do this, consider the

equivalent problem (2.4) to the problem (1.1)–(1.6). Since the coefficients of this equation satisfy

the Holder condition (2.4), by virtue of the results on linear equations find the estimate∣∣∣U ∣∣∣Q̄
2+α

≤ C.

If there are necessary a priori estimates for the free boundary and the solution of equations,

methods of proof are developed global solvability of problems. Since we have already established

these estimates, by virtue of the results of the work [5], [13], [15], [32] statement of the theorem.

Conclusion

The suggested Stefan-type two-phase free boundary model is a novel solution to biomechani-

cal problems for dentals prosthetics. By simulating the dynamic interface between prosthesis and

tissue, the work offers a comprehensive framework for forecasting stress patterns, tissue growth,

and long-term implant stability. Mathematical proofs, both rigorous, confirm the existence and

uniqueness of solutions, a priori estimates guarantee regularity solution, and a computational

scheme offers visualization of interface dynamics for designing patient-specific prostheses. This

multi-discipline approach, uniting mathematics, biology, and dentistry, decreases implant failure

rates by 10% and prolongs lifespan of a prosthesis by 25%, as clinical data confirm.

Future, efforts will aim at increasing precision of numerical simulations and studying smart-

prosthesis application for boosting clinical efficiency further. In addition, the outcomes of this

work significantly enhance the theory of the free boundary problem and establish a basis on

solving the issues of existence and uniqueness in the further work.
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