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Abstract. In this paper in rectangle domain an inverse problem for a fractional analogue of
the pseudoparabolic differential operator with mixed conditions, degeneration and identification
source is considered. Fractional operator is the Gerasimov—Caputo type and the solution of the
nonlinear differential equation with two spatial variables is studied in the class of generalized
functions. The nonlinear Fourier series method is used and by the aid of Kilbas—Saigo function
a nonlinear countable system of functional integral equation is obtained. In the proof of unique
solvability of the countable system is applied the method of successive approximations in com-
bination with the method of compressing mapping. We use the Cauchy-Schwarz inequality and
the Bessel inequality in proving the absolute and uniform convergence of the obtained Fourier
series. Then we derive the desire redefinition function also in the form of Fourier series.

Key words: Inverse problem, fractional analogue, nonlinear pseudoparabolic differential equa-
tion, final condition, degeneration, identification source.
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Introduction. Problem statement

Some problems of mechanics turn out to be initial-boundary (mixed) problems. Many mixed
problems are studied in solving different problems of hydrodynamics [1]. In [2], [3] mixed
problems for linear differential equations of parabolic and hyperbolic types were studied. In
works [4, 5], mixed problems for nonlinear differential and integro-differential equations of the



second, fourth and higher orders were studied. The main equations of the theory of non-
stationary filtration in fractured-pore formations are formulated in the work of G. I. Barenblatt,
Yu. P. Zheltov and I. N. Kochina [6] (see also [7]) and, further, developed by many authors [8]-
[13]. The theory and applications of fractional calculus have been developed by many authors
(see, for example, [14]-[22]). Investigation of the well-known fractional order differentiation
operators of Riemann—Liouville type and Gerasimov—Caputo type are important, because they
describe diffusion processes [15, vol. 1, 47-85]. A physical and engineering interpretations of the
generalized fractional operators are given in [15, vol. 4-8]. Note that boundary value conditions
of the type (0.3) (see, below) take place in modeling problems of the flow around a profile by a
subsonic velocity stream with a supersonic zone. Different mixed and boundary value problems
for differential and integro-differential equations with identification source were studied in the
works of many authors (see, for example, in the works [23]-[43]).

In the domain Q = {(t,x,y) 0<t<T, 0<uz,y< l} a partial differential equation of the
following form
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is considered with final point integral condition

2 2
(86;2 + 883/)] Ut,z,y) = f(t,z,y, U(t,z,y)) (0.1)

U(T,z,y) = ¢(x,y) /R U(s,z,y)ds, 0<zx,y<lI, (0.2)

where §, T and [ are given positive real numbers, for 0 < a < 1 [15, Vol. 1, p. 34]
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is Gerasimov—Caputo type fractional operator [44, p. 112]
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is Riemann-Liouville integral operator, a(t),b(t) € C[0,T] is given function, f(x,y) is given
function, ¢(z,y) € Lg([O, l]2) is redefinition function. Sometimes, we use the notations: Qp =
0,77, Q= [0,1].

We denote by Wy’ fg "(Q) the class of continuously functions U(t, z) of two variables in closed
rectangle Q = {(t, )| 0<t<T, 0<z< l} and having partial derivatives in it

W(ta) PUka)  P"U(La) dU(a)  9U(La)
oxr = 0z2 T QgAnm 7 ot ’ otn

each of them belongs L2(Q)), and n,m are positive integers.

Problem 0.1. Find the generalized solution U(t, z,y) € W22 taf;(Q) which satisfies partial
differential equation (0.1), final value integral condition (0.2), boundary value conditions
U(t,0,y) =U(t,l,y) =U(t,2,0) =U(t, z,1) =0 (0.3)

almost everywhere.



Problem 0.2. Find the pair of functions U(t, z,y) € WQQtO‘nyQ(Q) o(z,y) € La([0,1]%), first
of which satisfies the additional condition

/H (s,z,y)ds = P(z,y), (0.4)

where ¥(x,y) € Lg([O, Z]Q) is given function and (0,y) = ¥(l,y) = ¥(z,0) = ¥(x,l) =
We assume that for the given functions are true the following boundary conditions

©(0,y) = o(l,y) = ¢(x,0) = ¢(x,1) =0,
f(t, 0, Y, U(t, 0, y)) = f(t, l, Y, U(t’ la y)) = f(t) z,0, U(tv z, 0)) = f(tv €, lv U(t’ z, l)) = 0.
1 Reducing the problem 0.1 into countable system of
nonlinear integral equations

Nontrivial solutions of the problem (0.1)—(0.3) are sought as a Fourier series

Ut ,z,y) = Z Un,m (t) Unm (2, Y) (1.1)
n,m=1
and we suppose that
Fn0) = S fumlte) D (0), (1.2
n,m=1

where

1 1
un,m@):O/O/Utnf D (1, E)ANdE, fomt =0/0/ftv7§ (. E)dnde,  (1.3)

2 2
Unm(z,y) = jsinknx sin Ay = jsin ?x sin lmy, nm=1,2, ...

Substituting Fourier series (1.1) and (1.2) formally into partial differential equation (0.1),
we obtain a countable system of ordinary fractional differential equations of 0 < « < 1-order
with degeneration

e}
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We suppose also that there is true the following Fourier expansion
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n,m=1



where .
o — / / (11, €) Or (1, €) . (1.5)
0 0

By Fourier coefficients (1.3) and (1.5), the final value integral condition (0.2) takes the form

T
Un,m(T) = onm + /R(s)un,m(s)ds. (1.6)
0

We use the well known Kilbas—Saigo type function, which is generalized two-parametric
Mittag—Leffler function [15, Vol. 1. pp. 269-295]

m

Zfam+ﬂ z,a,f €C, Re(a)>0.

m=0

The Kilbas—Saigo function is defined for real a,m,l € R and complex | € C is defined by the
following form [14, 16]

(afjm + 1] +1)
E 1, - | I =12, ...
aml Ckz cp < Cr = I‘ alim+1+1] 1) k y 45

The Kilbas—Saigo functions belong to the class of entire functions in the complex plane [45].

Let us consider the final value problem for a countable system of ordinary differential equation
of fractional order with degeneration

CDgtun,m(t) = _N%’mtﬁun,m(t) + fn,m(ta ')7 un,m(o) = hn,ma (17)

where BE€R, 0<p2,, <1,

[ 1
- / / W1, €) D (1, E)nde,  h(z,y) € Lo (0.1,
0 0

1
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0 0

3,j=1
Let v € [0,1). Then we consider the class of following functions
Cy[0,T] = {gnm(t) : " gnm(t) € C[0,T]},
C210,7] = {gnm(t) € C[0,T]: cD§gnm(t) € C4[0,T]}.

We use the known fact that for |arg z| < o and |z| > 0 the following estimate is true [45]

My
1+ 2]

1
| Eau(2)] < My(1+ [2])= eRe™ + : (1.8)



where M; and M are constants, not depending from z; a < 2, z € C, ¢ is real constant and
o is fixed number from the interval (%,min {m, Wa}). If we put z = ui’mtﬂ(t — 7)Y 0 = q,
then from (1.8) we have

11—«

1
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| oo (i2t?(t= 1)) | € 31 [14 2 0 = 7)0] im0V
+ My
1+ M%,mtﬁ(t _ 7—)04

Lemma 1.1. Let v € [0,a], 8 > 0. Then for all g, m(t) € C,[0,T] there exists a unique
solution unm(t) € C$10,T] of the Cauchy problem (1.7). This solution has the following form

< M. (1.9)

t
tnin(®) = nnE 12,2 (<4Et™) + [ K(t.1gnm(rir (1.10)
0

K(t7) =) Kit,7), (1.11)

t
2

Ko(t,7) = —(t — 7)*7 L, K;(t,7) = 'I;‘?’m)/sﬁ —5) K (s, T)ds, i=1,2,..., (1.12)
(6%

Ea,1+§,§ (u%’mto‘+5) s Kilbas—Saigo function.

Moreover, for the kernel (1.11) in the case of v € [0,a], S > 0 there holds the following
estimate
K (7)< (= 7)° Baya (1217t = 7)%) < (= 7)* 7'M, (1.13)

where Mz = const.

Consequently, the general solution of the countable system of ordinary differential equations
(1.7) we write as

t
umm(t) = Cn,mEa71+ﬁ7ﬁ <_Mi,mta+’3 T AQ /K t S fnm )}ds, (114)
[eaNer m
0

where C), p,, is arbitrary constant, kernel K (t, s) is defined by the formulas (1.11), (1.12) and for
the kernel is true the estimate (1.13).

To find the unknown coefficients C,, ,, in (1.14), we use condition (1.6). So, substituting the
equation (1.14) into (1.6), we obtain

T
:Spn’m—i—UJ/R unm ds.
0



Hence, we derive

T

1
_ —1 —1 _ .
Carn = onn @7 + Q5" [ {RO usult) = g = KT fum(t )t (L15)
0 K
where
Qr = Ea’]_Jrﬁ’ﬁ <_:U’$L,mTa+B> : (116)

Further, substituting the coefficient presentation’s (1.15) into equation (1.14) and taking into
account (1.16), we derive a countable system of nonlinear integral equations (CSNIE)

T
un,m(t) = Ynm Qt Q%l + Qt Q;l / R(S) un,m(s)d5+
0

T

1 +)\2 / (t,s) fnm(s,-)ds, (1.17)
"

where
_ K(t,s) —QiQ ' K(T,s), t <s<T,
K(t,s), 0 <s<t.

2 Redefinition function. Realisation of the inverse Problem

Substituting the countable system of integral equations (1.17) into Fourier series (1.1), we
obtain

U(t,z,y) Z Dnm (2 y){SOantQT +QtQT /R ) Un,m(8)ds+

n,m=1

1+>\2 /K (t,s) fam(s,-)d } (2.1)

By virtue of (1.1), (1.2) and (1.5), the additional condition (0.4) we rewrite in the form

Ynm = /H(s)unm(s)ds.
0

We apply the last condition to the (1.17)

T T
Q;Z)n,m = /H(S) Pn,m Qs Q;l +Qs Q;l /R(G) un,m(e)d‘9+
0 0
T
1 +)\2 7 / $,8) frm(0 )d@}ds. (2.2)
0



T
Assume that qo = /H ) Qs Qr'ds # 0. Then from (2.2) we have
0

T

Pnm = qal ¢n,m - 1 _|_ )\2 /H / S, (9 fnm )d@ds—
0

T
—qp " /H ) Qs Q7 /R ) Unm (0)dOds. (2.3)
0
Hence, we obtain the Fourier series for redefinition function
o T
_ —1
y) = Zlﬂn,m(fﬂ,y){qO wn,m — 1 + )\2 /H / S, 0 fnm )d&ds—
n,m= 0
T T
—qp " / H(s) Qs Qr" / R(0) un,m(e)deds}. (2.4)
0

Redefinition function in (2.4) consists unknown function w, n,(t). So, the function (2.3) we
substitute into the equation (1.17) and Fourier series (2.1):

un,m(t) = J(t; Un,m( ) = q Qt QT Ynm+

L1
F t S //F(t 77,5 Z uz] 'Lj 77 5)) nm(n,g)dndé—d‘g_
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T T T
+Q: Q7' | | R(s)unm(s)ds —qp' [ H(s) Qs Q7" | R(6) un,m(9)d9d8] : (2.5)
/ / 0/

Ult,z,y) = Z ﬁnmxy){qo Q1 Q7" Y+

n,m=1

T L1
1 _
+1+A2,L/K(t 8)0/0/F<t77§ S iyt unf)> (1, s —

i,7=1

11
—qal Q+ QTl/H(s)/K(s 0)//F(9 n,&, Z wi;(0)95,5(n, )) Un,m (1, §)dndédbds |+
0 0 0

i,j=1

T T T
/ R(S) tnm(s)ds — g5 * / H(s) Qs Q7! / R(0) un,m(e)de)ds] } (2.6)
0 0 0
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3 Main theorems

We will use the concepts of the following well-known Banach spaces. Space B[0,T] of
sequences of continuous functions {u, ()}, _; on the segment [0, 7] with norm

00 2
170 oy = | 3 (s lonn®)1) < o0

Hilbert coordinate space 2 of number sequences {@pm}, . _; with norm

Z ’@nm’ < 0.

n,m=1

121, =

The space Lo (QIQ) of square-summable functions on the domain QIQ = ; x ); with norm

1
192.9) 0 = //W@WF®@<w
0 0

It is not difficult to prove that Bessel’s inequality is valid:

o0
- 2
1Gle, = | D lenml® <oz, y) IILZ(Q%)- (3.1)

n,m=1

Theorem 3.1. Let be fulfilled the smoothness conditions and following conditions:
o0
n. > ’¢n,m‘ < o0;

n,m=1

T T
2). max 0f|R(s)|ds;({\H(s)|ds}<oo

)
3) || f(tvxaya U ||L2 (Qx(foo,oo)> < CO = const;
4) ’f(twqjvyaul) - f(t7x7y7u2) ‘ < C(.’L’,y) ‘Ul — U2 ‘7 0< C(.T,y) € LQ(le)a
5). p= MlH C(z,y) HL o l]QAl + Ay < 1, where
M= > , A1 and Ay will be defined below from (3.6) and (3.7), respectively.

A2
n,m=1
Then CSNIE (2.5) has a unique solution in the space Ba[0,T].

Proof. In proof of the theorem, we use the method of successive approximations:

{ u%,m(t) = Q()_l Q1 Q;l wn,mv

ubtl() = J(tuk ), k=0,1,2,3,..., te[0,T]. (32)

0

Let us estimate the zero approximation wuy, ,,(t). We use the known estimate [14]

! <E (—7) < L
— —1(—7
1+0(1—a)r —  @mmt ~ D ta(m-1)
I'(1+4am)

1+




s

which is true for every a € [0,1], m > 0 and 7 > 0. We put 7 = —p2t*8 m=1+=, T'(1+
a
am—1))=T1+p), I'(1+am)=T(1+ «+ B), then we obtain
E .88 (—;ﬂ t"‘+ﬂ) < ! <1. (3.3)
altog L - I1+5)

2 m#x—&-ﬂ

L4
F(1+a+ﬁ)“”’

From (3.3) it is obvious that 0 < ‘ Q¢ Q}l ‘ < 1. So, taking into account (1.13), for the first
approximation from (3.2) we have

o0 2 [ee)
H @(t) HBz[O,T] - Jngl [o?%}% ’ U (?) ” = L= oIgtaSXT } U%m(t) ’ =
[e.e] o0
< OréltanT‘qalHQtQ;len,m‘S‘qal‘ D [ Ynm | = b0 < 0. (3.4)
n,m= n,m=1

Due to the estimates (1.13), (3.4), applying the Cauchy—Shwartz inequality and Bessel’s
inequality (3.1), for the first difference we obtain

1@ (@) = @) [| g, 0.7y <

~ T 11 -
<> max s [ [Ees [ [ F(t,n,g,Zu?,j@)z%,j(n,s)) D (1.6 ddécls| +
mm=h 0 00 Bj=1
T T 11 0 -
Hat|| [re [ [ F<tﬂ7a€, > eyt w,m,s)) nann,dedods ||+
0 0 0 0 =1 .
o T T
+ Jnax /R(s) | ud  (s) |ds | + ’qo—l ‘ /H(s) Qs Q7 /R(G) | u%m(ﬁ) |dfds ] <
nm=1 0 0 0

T T T
) Bz[O,T}{O/|K(t’S) |ds+‘qal ‘/|H(s)|/|K(s,0)\d0ds}+

0<t<T
0 0
00 T T T
0 —1
£ ) max [l () \{ [1rG) s+ 6| [ 1561 [1RE) deds} <
n,m=1 0 0 0
<y [M100A1 + AQ] = 0p01 < o0, (3.5)

where

01 = M1CoAr + Ay, My =




T T T
8o = [1Rs)las+ gt | [ 17| [ 1K(s.0) jdois, (36)
0 0 0
T T T
As :/|R(s)|ds+ ‘qo_ll/\H(s)\/]R(HHdes. (3.7)
0 0 0
Due to the estimate (3.5), for the arbitrary difference ufﬁ;rlb (t)—ugm(t) we obtain the following
estimate -
k1 o k+1 k
H @t () — @t (t) HBQ[O,T] < - org%XT ‘ un,+m<t) - unm(t) ‘ <
- 1 T 11 -
§7d k k-1
<Y [ [Rws) [ o) [uki6) =k ) [0i5 (0. (. ndcls| +
n,m= ) 0 0 0 1,j=1
T T Lol
—1 N7d k k-1 -
Ha|| [ [0 [ [eme) Y [ubi0)-ut5'0) | 90.€) Dl ) dndedos | +
0 0 00 bj=1
- T T T
+ max [ /\R(3)|‘uk-(s)—uk 1(s) ’ds —|—‘q_1‘ /H(s)/|R(0)\‘uk-(9)—u’?f1(9)’d&ds ] <
0<t<T b ©J 0 i, i, =
n,m=1 0 0 0
257 L 1 ’ S k k—1 ‘
<2 _ - <
<M, ogltangHC(x’y) ’ BQ[O’T]Hu (t)—a" () B2[07T]A1+ Zzlo?%‘“"’m(t) Uy (1) A2 <
< g1 [gﬂlH C(JZ y) ‘ A1+ Ag}k = 50(51pk (3.8)
- l ’ L»[0,1]2 ’
where -

— 1
AL+, Mi= ) 2

m

p= %MlHC(fv,y)‘

2
L2 [Ovl] n,m:l n,

Aj 4+ Ay < 1 and &y < oo, §; < 00, from estimates (3.8)

. 2—
Since p = IMIH C(z,y) ‘ Lafou?

follows that

lim
k—o0

ﬁk—H(t) _ ﬁk(t) ‘

P (3.9)

From estimates (3.4), (3.5) and (3.9) we obtain the existence and uniqueness of the solution
u(t) € Ba[0,T] to CSNIE (2.5). Theorem 3.1 is proved. O

The Fourier series (2.6) we consider as a formal solution of the problem (0.1)-(0.3).

Theorem 3.2. Let the conditions of Theorem 3.1 be satisfied and

200 [1 + 01 (%MIH C(z,y) ‘

Lot A2>] <1

If u(t) € B2[0,T] is the unique solution to CSNIE (2.5), then the series (2.6) will be gener-
alized solution to the mized problem (0.1)—(0.3) almost everywhere.

10



Proof. We consider the difference

U(t’ €, y) - Uk (t7 T, y) ‘ = Z U;L“jm (t) 19717771 (.73, y) - Z qu,m (t) 19717771 ('737 y)
n,m=1 n,m==k
Z ’ Un, m n m .’L’ y) ’
n,m=~k

As in the case of proof of the theorem 3.1, we obtain the estimate

Z‘“’”m ”mxy)‘ i | O (2, ) | X

n,m=k n,m=k
Aa'] 32 Lo+ [T clen ], 80+ 87 <
ot Az)] < . (3.10)

n,m==k

< a0+ (330 clan) |

Since (t) € B2[0,T] and %50 [1 + 6 (%Mlu C(z,y) ‘ Lo Z]QAl + A2>:| <1 from (3.10) implies
21Y,
that

hm ‘Utm y) — Uk(t, z, y)‘ 0.
This proved the theorem 3.2. 0

Now the function wy, ,, () in the representation (2.4) is known. As 1(t) € B[0,T], the proof
of the convergence of series (2.4) is similarly tho the proof of the Theorem 3.2.

Conclusion

In the domain Q = {(t,2,y)|0 <t < T, 0 < z,y < l} the generalized solvability of the
inverse mixed problem (0.1)-(0.4) for a partial differential equation is considered for the case
of a-order Gerasimov—Caputo type fractional operator with order 0 < aw < 1. The considering
equations depend from three independent arguments. First argument is time argument and with
respect to this argument considering equation is fractional Gerasimov—Caputo type ordinary
differential equation. Second and third arguments are spatial and the equations with respect to
these arguments are differential equations of second order. The Fourier series method is used and
a countable system of differential equations is obtained and studied. The generalized solvability
of mixed problem (0.1)—(0.3) is derived in the form of the Fourier series.
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