ОШ МАМЛЕКЕТТИК УНИВЕРСИТЕТИНИН ЖАРЧЫСЫ. АЙЫЛ ЧАРБА: АГРОНОМИЯ, ВЕТЕРИНАРИЯ ЖАНА ЗООТЕХНИЯ

ВЕСТНИК ОШСКОГО ГОСУДАРСТВЕННОГО УНИВЕРСИТЕТА. СЕЛЬСКОЕ ХОЗЯЙСТВО: АГРОНОМИЯ, ВЕТЕРИНАРИЯ И ЗООТЕХНИЯ

JOURNAL OF OSH STATE UNIVERSITY. AGRICULTURE: AGRONOMY, VETERINARY AND ZOOTECHNICS

e-ISSN: 1694-8696 №4(5)/2023, 63-67

ВЕТЕРИНАРИЯ

УДК: 636. 082.12

DOI: 10.52754/16948696 2023 4 9

ПОЛИМОРФИЗМ ГЕНА ФАКТОРА НЕКРОЗА ОПУХОЛИ (TNF) У КРУПНОГО РОГАТОГО СКОТА ХОЛМОГОРСКОЙ ПОРОДЫ

ХОЛМОГОР ПОРОДАСЫНДАГЫ УЙЛАРДЫН ШИШИК НЕКРОЗ ФАКТОРУНУН (ТНФ) ГЕНИНИН ПОЛИМОРФИЗМИ

POLYMORPHISM OF THE TUMOR NECROSIS FACTOR (TNF) GENE IN CATTLE KHOLMOGORY BREED

Калашникова Любовь Александровна

Калашникова Любовь Александровна Kalashnikova Lyubov Alexandrovna

д.б.н., профессор, ФГБНУ «Всероссийский научно-исследовательский институт племенного дела»

б.и.д., профессор, Федералдык мамлекеттик бюджеттик мекеме "Бүткүл россиялык илимий изилдөө асыл тукум институту» Doctor.Sc.Biol., Professor, All Russian Research Institute of Animal Breeding ladnatehplem@mail.ru

Багаль Ирина Евгеньевна

Багаль Ирина Евгеньевна Bagal Irina Evgenievna

к.б.н., ФГБНУ «Всероссийский научно-исследовательский институт племенного дела»

б.и.к., Федералдык мамлекеттик бюджеттик мекеме
"Бүткүл россиялык илимий изилдөө асыл тукум институту»
Candidate of Biological in Sciences, All Russian Research Institute of Animal Breeding
ladnatehplem@mail.ru

Калашников Владимир Евгеньевич

Калашников Владимир Евгеньевич Kalashnikov Vladimir Evgenievich

ФГБНУ «Всероссийский научно-исследовательский институт племенного дела»

Федералдык мамлекеттик бюджеттик мекеме
"Бүткүл россиялык илимий изилдөө асыл тукум институту»
All Russian Research Institute of Animal Breeding
ladnatehplem@mail.ru

ПОЛИМОРФИЗМ ГЕНА ФАКТОРА НЕКРОЗА ОПУХОЛИ (TNF) У КРУПНОГО РОГАТОГО СКОТА ХОЛМОГОРСКОЙ ПОРОДЫ

Аннотация

Представлены результаты генотипирования крупного рогатого скота холмогорской породы (50 голов) по гену TNF (824A/G) методом ПЦР-ПДРФ. Установлено, что у коров холмогорской породы преобладает аллель G (0,65). Половина исследованных животных имеет генотип AG (46%) гена TNF. Более 80% коров имеют в составе генотипа аллель G.

Ключевые слова: крупный рогатый скот, холмогорская порода, ген, TNF, полиморфизм, ПЦР-ПДРФ.

Холмогори мал туктунунда шишик некроз факторунун (тнф) генинин полиморфизми

Polymorphism of the tumor necrosis factor (tnf) gene in cattle kholmogory breed

Аннотация

Холмогор бодо малдын (50 баш) TNF генине (824A/G) ПТР-RFLР ыкмасын колдонуу менен генотиптөөнүн натыйжалары берилген. Холмогорь породасындагы уйларда G аллели басымдуулук кылаары аныкталган (0,65).Изилденген жаныбарлардын жарымында TNF генинин AG генотиби (46%) бар. Уйлардын 80%дан ашыгы генотипинин бир бөлүгү катары G аллелине ээ.

Ачкыч сөздөр: бодо мал, холмогорий породасы, ген, ТНФ, полиморфизм, ПЦР-РФЛП.

Abstract

The results of genotyping of Kholmogory cattle (50 heads) for the TNF gene (824A/G) using the PCR-RFLP method are presented. It was found that the G allele predominates in cows of the Kholmogory breed (0.65). Half of the animals studied have the AG genotype (46%) of the TNF gene. More than 80% of cows have the G allele as part of their genotype.

Keywords: cattle, kholmogor breed, gene, TNF,polymorphism, PCR-PFLP.

Введение. Использование генов, связанных с функционированием иммунной системы у крупного рогатого скота, для селекционного совершенствования пород, позволит улучшить показатели иммунного статуса, продуктивности и долголетия животных. Генотипы животных по генам иммунной системы могут служить дополнительным критерием отбора для повышения устойчивости к болезням, особенно таким как мастит, который существенно влияет на производственные показатели и экономическую рентабельность хозяйств [1].

Известно, что фактор некроза опухоли альфа (TNF) играет важную роль в защите организма от ряда бактериальных и вирусных инфекций. Это цитокин, который играет решающую роль в иммунном ответе на инфекции, индуцируя экспрессию молекул адгезии и других цитокинов, пролиферацию клеток и апоптоз. Он вырабатывается многими типами клеток, в том числе макрофагами, Т-лимфоцитами, нейтрофилами и NK-клетками [2,3].

Ген TNF локализован в хромосоме BTA 23q22 в регионе BoLA и состоит из 4 экзонов и трех интронов [4,5].

Cheng, Y. et al. было установлено влияние однонуклеотидных полиморфных вариантов TNF (SNP гена TNF) на восприимчивость крупного рогатого скота к микобактериальной инфекции [6]. Рядом авторов были выявлены ассоциации полиморфизма гена TNF с клиническим и субклиническим маститом [7] и лейкозом крупного рогатого скота [8,9].

Целью настоящего исследования было изучение полиморфизма гена TNF у крупного рогатого скота холмогорской породы.

Материалы и методы исследования. В лаборатории ДНК-технологий ФГБНУ ВНИИплем были исследованы коровы холмогорской породы из племенного хозяйства Архангельской области (50 голов). Методом ПЦР-ПДРФ был изучен однонуклеотидный полиморфизм в промоторной области гена TNF -824 A/G (GeneBank Acc. № RS109111281). Для диагностики мутации использовали рестриктазу AluI, поскольку мутация А →G (аллель G) элиминирует сайт узнавания этой рестриктазы [9]. Породная принадлежность животных определялась согласно зоотехническим документам. Статистическая обработка результатов была выполнена с использованием компьютерной программы «Microsoft Excel».

Результаты и обсуждения. В результате генотипирования коров холмогорской породы было выявлено наличие двух аллелей A и G и трех генотипов AA, AG и GG.

Полученные результаты по полиморфизму гена TNF крупного рогатого скота холмогорской породы представлены в таблице 1.

Таблица 1. Частота встречаемости аллелей и генотипов фактора некроза опухоли у коров холмогорской породы

	n	Частота генотипа						Частота аллеля		
Хозяйство		AA		AG		GG		$\pm m_A(m_G)$		Не
		n	%	n	%	n	%	A± m _A	G± m _G	
ООО «Пежма»	50	6	12	23	46	21	42	0.35 ± 0.05	0,65	0,46
Архангельская область									±0,03	

Примечание: m_A(m_G) - ошибка частот аллелей, Неожидаемая гетерозиготность

Анализ полученных данных показал, что у холмогорских коров преобладает аллель G, его частота достигла 0,65. При этом частота аллеля A почти в 2 раза меньше (0,35). Большинство исследованных животных (46%) имеет гетерозиготный генотип AG. На втором месте по частоте находятся носители гомозиготного генотипа GG (42%) и лишь 12% поголовья имеют генотип AA.

У исследуемых нами животных холмогорской породы показатели наблюдаемой (Но) и ожидаемой (Не) гетерозиготности имеют равные значения (46%). Стадо находится в генетическом равновесии.

Полученные нами результаты в целом соответствуют данным других авторов. Высокую частоту аллеля G (0,816) и генотипа GG (66,67%) гена TNF -824A/G выявили Сафина Н.Ю. с соавторами у голштинского скота Республики Татарстан [10]. В исследовании полиморфизма гена TNF-824 A/G Yudin N.S. с соавторами показали, что частота аллеля G у черно-пестрой породы составила 57,9% [11]. В стадах черно-пестрого скота в Польше была выявлена частота аллеля G- 0,53 [9].

Выводы. В исследуемом стаде преобладает аллель G гена TNF с частотой 0,65 и гетерозиготный генотип AG (46%). Носителями аллеля G являются более 80% коров холмогорской породы. Распределение аллелей и генотипов гена TNF по мутации -824 A/G в целом соответствует таковому у черно-пестрого и голштинского скота.

Литература

- Puerto MA, Shepley E, Cue RI, Warner D, Dubuc J, Vasseur E. The hidden cost of disease:

 Impact of the first incidence of mastitis on production and economic indicators of primiparous dairy cows. J Dairy Sci. 2021 Jul; 104(7):7932-7943. doi: 10.3168/jds.2020-19584. Epub 2021 Apr 15. PMID: 33865582
- 2. Horiuchi T, Mitoma H, Harashima S, Tsukamoto H, Shimoda T (2010) Transmembrane TNF-a: structure, function and interaction with anti-TNF agents. Rheumatology 49:1215–1228
- 3. Blandizzi C, Gionchetti P, Armuzzi A, Caporali R, Chimenti S, Cimaz R, Cimino L, Lapadula G (2014) The role of tumour necrosis factor in the pathogenesis of immune-mediated diseases.Int J Immunopathol Pharmacol 27(1 Suppl):1–10
- 4. Agaba, M., S. J. Kemp, W. Barendse, and A. J. Teale. Polymorphism at the bovine tumor necrosis factor alpha locus and assignment to BTA23//Mamm. Genome, 1996, 7:186–187
- 5. W.M. Grosse, S.M. Kappes, W.W. Laegreid, J.W. Keele, C.G. Chitko-McKown, M.P. Heaton. Single nucleotide polymorphism (SNP) discovery and linkage mapping of bovine cytokine genes//Mamm. Genome, 1999, 10: 1062-1069
- 6. Cheng, Y., Huang, C., & Tsai, H. Relationship of bovine TNF-α gene polymorphisms with the risk of bovine tuberculosis in Holstein cattle//The Journal of Veterinary Medical Science, 2016,78: 727 732
- 7. Sattar, Huma & Firyal, Sehrish & Awan, Ali & Rehman, Habib & Hasni, Sajid & Aqib, Amjad. (2019). Genetic Association of Bovine TNF-α Gene Polymorphism with Clinical and Sub-clinical Mastitis in Sahiwal Cows. Pakistan journal of zoology. 15. 1-4.
- Lendez PA, Passucci JA, Poli MA, Gutierrez SE, Dolcini GL, Ceriani MC. Association of TNF-α gene promoter region polymorphisms in bovine leukemia virus (BLV)-infected cattle with different proviral loads. Arch Virol. 2015 Aug;160(8):2001-7. doi: 10.1007/s00705-015-2448-5. Epub 2015 Jun 9. PMID: 26051703
- 9. Bojarojć-Nosowicz B, Kaczmarczyk E, Stachura A, Kotkiewicz M. Polymorphism in the promoter region of the tumor necrosis factor-alpha gene in cattle herds naturally infected and uninfected with the bovine leukemia virus. Pol J Vet Sci. 2011;14(4):671-3. doi: 10.2478/v10181-011-0101-0. PMID: 22439343.

- 10. Safina, Natalia & Fattakhova, Ziliya & Gaynutdinova, Elza & Shakirov, Shamil. (2022). Economic milk losses and revenues due to barrenness cows with different genotypes of TNF-a gene. 252. 216-221. 10.31588/2413_4201_1883_4_252_216.
- 11. Yudin NS, Aitnazarov RB, Voevoda MI, Gerlinskaya LA, Moshkin MP. Association of polymorphism harbored by tumor necrosis factor alpha gene and sex of calf with lactation performance in cattle. Asian-Australas J Anim Sci. 2013 Oct; 26(10):1379-87. doi: 10.5713/ajas.2013.13114. PMID: 25049721; PMCID: PMC4093077.